

Hellenic Surgical Oncology

September-December 2016 – VOLUME 7 – NUMBER 3

ISSN: 1108-9253

- Co-morbidity factors in patients with colorectal cancer. A pilot study
- LLETZ Cone biopsy for cervical intraepithelial neoplasia - Analysis of sensitivity and specificity of colposcopy and cytology
- Diagnosis of recurrent laryngeal carcinoma after (chemo)radiation and its salvage surgery
- Staging laparoscopy in gastric cancer
- Treatment of acute malignant colorectal obstruction: diverting colostomy as a bridge for elective surgery is a safe and valid alternative
- Individualized treatment for an eccrine porocarcinoma of the scalp using lymphoscintigraphy
- Ένα υπέροχο ταξίδι στην ιστορία και εξέλιξη της ανατομικής

Hellenic Surgical Oncology

HELLENIC SURGICAL ONCOLOGY

OFFICIAL PUBLICATION OF THE HELLENIC SOCIETY OF SURGICAL ONCOLOGY

BOARD OF DIRECTORS HELLENIC SOCIETY OF SURGICAL ONCOLOGY:

President: I. Karaitianos

Vice President: O. Zoras

General Secretary: I. Kaklamanos

Treasurer: Th. Theodosopoulos

Members: D. Voros

E. de Bree

J. Romanos

EDITORIAL BOARD:

Editor-in-Chief: E. de Bree, *Heraklion, Greece*

Members: H.R. Alexander Jr., *Baltimore, U.S.A.*

E. Athanasiou, *Larissa, Greece*

R.A. Audisio, *Liverpool, United Kingdom*

G. Basdanis, *Thessaloniki, Greece*

R. de Bree, *Utrecht, Netherlands*

G. Chalkiadakis, *Heraklion, Greece*

T. van Dalen, *Utrecht, The Netherlands*

A. Garofalo, *Rome, Italy*

V. Georgoulias, *Athens, Greece*

H. Goga, *Athens, Greece*

S. Gonzalez-Moreno, *Madrid, Spain*

A. Gronchi, *Milan, Italy*

P. Hohenberger, *Mannheim, Germany*

I. Kaklamanos, *Athens, Greece*

I. Kanellos, *Thessaloniki, Greece*

I. Karaitianos, *Athens, Greece*

D. Kardamakis, *Patras, Greece*

G. Kokkalis, *Athens, Greece*

D. Manganas, *Athens, Greece*

C. Mavrantonis, *Athens, Greece*

I. Nomikos, *Athens, Greece*

O.E. Nieweg, *Sidney, Australia*

K. Ntatsis, *Athens, Greece*

N. Perakis, *Athens, Greece*

M.G. Pramateftakis, *London, United Kingdom*

K. Romanidis, *Alexandroupoli, Greece*

C.R. Rossi, *Padova, Italy*

D. Roukos, *Ioannina, Greece*

E. Samantas, *Athens, Greece*

E. Sanidas, *Heraklion, Greece*

J. Spiliotis, *Athens, Greece*

K. Stamou, *Athens, Greece*

A. Stratigos, *Athens, Greece*

A. Tentes, *Athens, Greece*

K. Tepetes, *Larissa, Greece*

Th. Theodosopoulos, *Athens, Greece*

K. Vagianos, *Athens, Greece*

D. Voros, *Athens, Greece*

O. Zoras, *Heraklion, Greece*

PUBLISHER – DIRECTOR:

I. Karaitianos

PAPERS' SUBMISSION-FEES PAYMENT-CORRESPONDENCE:

HELLENIC SOCIETY OF SURGICAL ONCOLOGY

76 Sevastoupolos street – GR-115 26 Athens

Tel.: +30 210 69 82 950, Fax: +30 210 6994258, e-mail: eis-iatriki@otenet.gr

ANNUAL SUBSCRIPTIONS: 50 €

LIBRARIES-ORGANIZATIONS-INSTITUTIONS: 100 €

PUBLISHING: TECHNOGRAMMAmed

380 Mesogeion Ave. – GR-153 41 Agia Paraskevi

Tel.: +30 210 60 00 643, Fax: +30 210 6002295, e-mail: techn@hol.gr

ΕΞΕΛΙΞΕΙΣ ΣΤΗΝ ΧΕΙΡΟΥΡΓΙΚΗ ΟΓΚΟΛΟΓΙΑ ΤΟΥ ΠΕΠΤΙΚΟΥ

Σύγχρονες
Κατευθυντήριες
Οδηγίες Διάγνωσης
Χειρουργικής και
Συντηρητικής ή
Θεραπείας

24-26
Φεβρουαρίου 2017

Aquila Atlantis Hotel
Ηράκλειο Κρήτης

Save
the date

Διοργάνωση
Εταιρεία Βιοϊατρικών
Ερευνών Παθοσεων
Πεπτικού Συστήματος
(Ε.Β.Ε.Π.Π.Ε.Σ)

Θεραπευτικής Σεμιναρίου 17 μέρα
Συγχρόνευση Ιατρικής
Εκπαίδευσης
(CME - CPD credits)

..Πώς άνεμος σφοδρός σκορπίζει..
αλλού κι αλλού ξερά τα άκυρα της θημωνιάς,
έτοι σκορπίστηκαν και τα μακριά μαδέρια.
..Κι όμως ο Οδύσσεας κρατήθηκε σ' έναν κορμό,
τον καβαλίκεψε, λες κι ήταν άλογο της κούρσας..
(Ομήρου Οδύσσεια, 9 ενότητα: ραψωδία ε, στίχοι 405-408)

Scientific | Cultural Events and Publications | +302810 222155 | F +302810 222156 | E info@scep.gr | www.scep.gr

CONTENTS

Original Papers

Co-morbidity factors in patients with colorectal cancer. A pilot study.....	124
<i>C. Aggelakopoulou, G. Intas, P. Stergiannis, A. Diamantis, G. Mouzakis, K. Tepetes</i>	
LLETZ Cone biopsy for cervical intraepithelial neoplasia - Analysis of sensitivity and specificity of colposcopy and cytology	130
<i>D. Tsolakidis, E. Klonos, S. Pitis, T. Mikos, T. Theodoridis, A. Papanikolaou, B.C. Tarlatzis</i>	

Reviews

Diagnosis of recurrent laryngeal carcinoma after (chemo)radiation and its salvage surgery	134
<i>L. van der Putten, C.R. Leemans, R. de Bree</i>	
Staging laparoscopy in gastric cancer.....	144
<i>D. Stamatou, E. de Bree, O. Zoras</i>	
Treatment of acute malignant colorectal obstruction: diverting colostomy as a bridge for elective surgery is a safe and valid alternative	152
<i>E. de Bree, D. Stamatou, D. Michelakis, M. Christodoulakis</i>	

Case Report

Individualized treatment for an eccrine porocarcinoma of the scalp using lymphoscintigraphy	159
<i>I.J. den Toom, R. de Bree</i>	

Book Review

'Ενα υπέροχο ταξίδι στην ιστορία και εξέλιξη της ανατομικής	164
<i>E. de Bree</i>	

Co-morbidity factors in patients with colorectal cancer

A pilot study

C. Aggelakopoulou,¹ G. Intas,² P. Stergiannis,³ A. Diamantis,¹
G. Mouzakis,⁴ K. Tepetes¹

¹Department of Surgery, University Hospital of Larisa, Larisa, Greece, ²General Hospital of Nikaia "Agios Panteleimon", Athens, Greece, ³Oncology Hospital "Agioi Anargyroi", Athens, Greece, ⁴Health Centre Gonnou, Larisa, Greece

ABSTRACT

AIM: The purpose of this study was to investigate the co-morbidity factors of elderly patients with colon cancer, as a deviation or postponement cause as to the optimal treatment. **MATERIAL AND METHODS:** This was an observational epidemiological study. The study involved 40 patients who were hospitalized for surgical treatment due to colon cancer. The entry criteria of patients were to have colon cancer and at least one concomitant disease. The patient's disease was estimated with the Charlson co-morbidity scale and the ASA score. **RESULTS:** The study sample consisted of 23 (57.5%) men aged 73.1 ± 7.4 years and 17 (42.5%) women aged 71.4 ± 11.2 years. A total of 13 (32.5%) patients had cancer in the right colon, 16 (40.0%) in the left colon and 11 (27.5%) in the rectum. According to the ASA score, 9 (22.5%) patients were healthy (ASA score=1), 24 (60%) had mild systemic disease (ASA score=2) and 7 (17.5%) had severe systemic disease irreversible (ASA score=4). The Charlson co-morbidity score of patients was 2.8 ± 2.6 . In 7.5% of patients the surgery was postponed. Co-morbidity was calculated to be 92.5%. The most frequently found co-morbidities were hypertension, diabetes, metastasis, and atrial fibrillation. Patients with cancer in the left colon and sigmoid had significantly lower ASA score relative to the other (1.7 ± 0.6 vs. 2.3 ± 0.6 , $p=0.028$). **CONCLUSIONS:** Patients with colon cancer who are candidate for surgery have high levels of co-morbidity, especially when the tumour is located in the left colon.

KEY WORDS: colon cancer, co-morbidity, elderly, ASA score, Charlson co-morbidity

INTRODUCTION

Surgical treatment of elderly patients presents complex problems associated with the risk and benefit. For this reason expertise in the treatment of geriatric surgical patients is needed. The

perioperative care of geriatric surgical patients is nowadays an emerging topic for many medical subspecialties. With their harmonious coopera-

Corresponding address:

Chrysa Aggelakopoulou, 33-35 Kranonas street, 41222 Larisa, Greece
e-mail: geomuzi@gmail.com

tion the best possible and desirable solution for these geriatric surgical patients may be achieved.¹

Colorectal cancer is one of the most common malignancies worldwide and is among the types of cancer with an increased frequency in elderly patients. According to data from the Greek Society of Digestive Oncology, more than 300,000 new cases are diagnosed each year in Europe, of whom half are estimated to die from this disease.² The disease can be prevented by implement of an appropriate preventive programme, which aims not only to detect cancer at an early stage, but also the timely emergence of polyps who are the main condition evolving into cancer.² The high incidence and mortality of colon cancer is due to the fact that the screening programs are not largely accepted in healthy population, because of fear for the disease, but also the cost.³ The result of this is that the patient is treated surgically at a greater age, thus increasing the likelihood of concomitant health problems which are the reason for postponing or deviation from the optimal therapeutic treatment.^{3,4}

In developed countries, the life-time risk of an adult to develop colorectal cancer is 6%, meaning that 1 out of 18 adults will be diagnosed with colorectal cancer at a certain time of his or her life. Survival rates depend largely on the stage of the disease. Almost 94% of patients with limited disease survive more than five years, 70% with locally advanced disease patients exceeds more than five years, while only 9% of those with metastases live more than 5 years. Despite the knowledge that the very early diagnosis improves survival, only 35% of cancers are diagnosed early, 38% with locally advanced disease and 22% with metastases.²

The co-morbidity is a negative factor which affects the outcome to a greater extent on the age patient. In particular, patients with colorectal cancer exhibit higher mortality than those without co-morbidities, regardless of age. Several mechanisms could explain this difference in survival rates. Severe health problems may affect survival regardless of the existence of colorectal cancer.

Furthermore, co-morbidity acts as camouflage covering the symptoms of cancer, thereby delaying the diagnosis of colon cancer, the disease progresses to a next stage and prognosis is difficult. Also, the presence of accompanying diseases may prohibit the performance (or extent) surgical treatment of colorectal cancer with poor results for the patient. Finally, it has been observed that the co-morbidity interacts with cancer and accelerates its development.^{5,6}

The aim of this study was to identify the co-morbidity factors of elderly patients with colorectal cancer that causes deviation or postponement of the optimal treatment.

MATERIAL AND METHODS

This is a prospective observational study. The study involved 40 patients who were hospitalized for surgical treatment of colorectal cancer in the University Hospital of Larissa, Greece. For inclusion in the study the patient had to be diagnosed with colon cancer. The co-morbidity of the patients was calculated with the Charlson co-morbidity index scoring system and the ASA score. The ASA score varies from 1 to 6, with a score of 1 representing generally healthy individuals, a score of 2 those with mild systemic disease, a score of 3 those with severe systemic disease, a score of 4 those with severe systemic disease which is a constant threat to life, a score of 5 moribund patients and a score of 6 brain dead patients.⁵ Patients were divided into two categories according to their age, in elderly (>70 year) or not (<70 years).⁷

STATISTICAL ANALYSIS

The t-test was used to compare continuous variables, the Mann-Whitney test for non continuous / ordinal variables, and the Chi square test for categorical variables. The distribution of variables was checked by Kolmogorov Smirnoff test. The level of statistical significance in the univariate analyses was set at 0.05. Also, Pearson product-

moment correlations and univariate analysis were conducted to examine the potential relationships between Charlson co-morbidity index scoring system and ASA score and the rest variables of patients. All statistical analyses were performed using Statistical Package for the Social Sciences (SPSS), Version 21 for Windows.

RESULTS

The demographics data of all included 40 patients are presented in table 1. Thirty-two (80%) patients were admitted on a regular basis, 7 (17.5%) as an extraordinary hospitalization and 1 (2.5%) as an urgent. According to the ASA score, 9 (22.5%) patients were healthy, 24 (60%) had mild systemic disease and 7 (17.5%) had severe irreversible systemic disease. The Charlson co-morbidity score of patients was 2.8 ± 2.6 . For a small proportion of patients (7.5%) surgery was postponed due to co-morbidity. The patients underwent colectomy or only creation of a diverting colostomy or ileostomy.

Co-morbidity was observed in 92.5% of the patients. Totally, 19 patients (47.5%) had hypertension, 2 (5%) hepatitis, 4 (10%) coronary artery disease, 10 (25%) diabetes mellitus, 6 (15%) atrial fibrillation, 4 (10%) prostatic hypertrophy, 7 (17.5%) metastases, 2 (5%) renal failure, 1 (2.5%) anaemia, 2 (5%) brain aneurysm, 2 (5%) psychiatric disorders, and 2 (5%) a history of a stroke. The results are shown in Table 2.

Women had significantly higher ASA score

compared with men (2.2 ± 0.6 vs. 1.8 ± 0.6 , $p < 0.05$). Patients younger than 70 years had significantly lower ASA score compared with the other patients (1.7 ± 0.5 vs. 2.1 ± 0.7 , $p = 0.028$). The ASA score at cancer diagnosis was 2.3 ± 0.6 in regarding to cancer in cecum and right colon 1.7 ± 0.6 for cancer in the left colon and sigmoid colon and 1.9 ± 0.5 for rectum cancer.

The ASA score has positive linear weak to moderate correlation with age ($r = 0.449$), positive linear weak correlation to age group ($r = 0.348$), positive linear weak to moderate correlation with no history ($r = 0.429$) and negative linear weak correlation with gender ($r = -0.309$), negative linear weak to moderate association with artery disease

Table 2. Co-morbidity of the patients.

Disease	N (%)
Arterial hypertension	19 (47.5%)
Diabetes	10 (25%)
Metastasis	7 (17.5%)
Atrial fibrillation	6 (15%)
Coronary artery disease	4 (10%)
Prostatic hypertrophy	4 (10%)
Hepatitis	2 (5%)
Renal failure	2 (5%)
Brain aneurysm	2 (5%)
Mental disorders	2 (5%)
History of stroke	2 (5%)
Anemia	1 (2.5%)

Table 1. Patient's demographics.

	Total	Male	Female	p-value
N	40	23 (57.5%)	17 (42.5%)	0.001
Age	72.3 ± 9.2	73.1 ± 7.4	71.4 ± 11.2	0.574
≤70 years	15 (38%)	8 (53%)	7 (47%)	0.295
>71 years	25 (63%)	9 (36%)	16 (64%)	0.303
Cancer in cecum and right colon	13 (33%)	3 (23%)	10 (77%)	0.001
Cancer in left colon and sigmoid	16 (40%)	9 (56%)	7 (44%)	0.036
Cancer in rectum	11 (28%)	3 (27%)	8 (73%)	0.001

($r=-0.423$) and negative linear weak to average correlation to stroke ($r=-0.382$). The rating in CCIS score had negative linear correlation with patient's metastases ($r=-0.371$) and positive linear weak correlation with clean background ($r=0.306$).

DISCUSSION

The fact that cancer is mainly a disease of older people, and taking into account that the co-morbidity is common among the elderly, it could be generally considered that co-morbidity is common among cancer patients. This finding can be supported for different reasons. First, cancer and co-morbidity share many common risk factors. Age is the most obvious example, but there are many others. Smoking, poor diet, lack of physical activity, obesity and alcohol abuse are all risk factors for a range of common non-malignant conditions, including diabetes, hypertension, respiratory, cardiovascular and peripheral vascular disease and hepatic disease, but also for many cancers including lung, bladder, head and neck, colon, liver and breast cancer.⁸ Moreover, co-morbidities can cause cancer. There are a number of chronic diseases, especially chronic infections, immune system diseases and diabetes causally associated with increased risk of cancer. For example, hepatitis B may cause chronic liver disease that is closely associated with hepatocellular carcinoma and tuberculosis patients have an increased risk of lung cancer.⁹ In similar results appear to reached in this study, as hypertension and diabetes were the two most commonly reported co-morbidities. Conditions associated with immunosuppression (such as HIV/AIDS) or deregulation of the immune system (such as rheumatoid arthritis) associated with a number of cancers.^{10,11} Examples are the HIV/AIDS-related Kaposi's sarcoma, various cancers in patients with Hodgkin lymphoma and non-Hodgkin lymphoma and other haematological malignancies associated with non-Hodgkin lymphoma.^{10,11} The precise mechanisms by which these associations could arise have not been fully

elucidated, but it is likely to be multifactorial.¹⁰ Diabetes is also associated with an increased risk of many malignancies, including colon, pancreatic, liver, endometrial, and bladder cancer.^{10,12,13} While partially these conditions may be associated with common risk factors among diabetes and cancer (such as obesity), there are also indications that there are specific biological pathways directly linking diabetes with cancer.^{10,12,13}

Cancer can also cause (co)morbidity. However, this issue is confusing in clinical medicine, since the co-morbidity is usually considered as a cancer complication and not as a co-morbidity condition per se. While diabetes is known to cause cancer of the pancreas, maybe the reverse happens. Cancer of pancreas is the cause of diabetes in a small percentage of cases through the destruction of the islet cells of the pancreas which produce insulin.^{10,12,13}

On the other hand, however, the co-morbidities can protect against cancer, either directly or indirectly. As patients with diabetes are at increased risk of developing a number of cancers, they have a smaller risk of developing lung cancer, prostate cancer and Hodgkin's disease.¹³ While it is not exactly known why this happens, it is evident that this should be due to changes in hormonal profile, growth factors and steroids. Patients with hypothyroidism have also been found to have lower rates in breast cancer.¹⁰ Treatment for diseases of co-morbidity may also be protective. For example, the use of non-steroidal- anti-inflammatory drugs commonly used in arthritis associated with decreased risk of colon cancer.¹⁴

While there is general agreement that the co-morbidity is common among cancer patients, it is extremely difficult to state precisely how common is this. This is due to the fact that the prevalence of co-morbidity varies, sometimes dramatically, according to the measure of co-morbidity used, the available data, the study of population and location of the cancer. In assessing the impact of co-morbidity in chemotherapy use and outcomes among patients with solid tumours, the prevalence of co-morbidity has been reported to range among

patients with cancer from 0.4% to 90%.¹⁵ In the present study, the incidence of co-morbidity rate was 92.5%, very high compared to other studies.

It is not surprising that the studies using a more comprehensive measurement of co-morbidity show higher prevalence of co-morbidity than those that use a more restrictive approach. For example, one study used a comprehensive and inclusive approach to identify the co-morbidity in computerized medical records in a group of patients with breast cancer and found that 72% had at least one comorbidity.¹⁶ This is much higher than in another previous study which found that 13% of women with breast cancer had at least one concurrent disorder.¹⁷

Most studies using the Charlson index indicate that 10-75% of cancer patients have at least one rating in the index Charlson.^{18,19} The variation is largely due to the characteristics of the study population and the data collected. For example, studies are limited to elderly patients generally have higher levels of co-morbidity. Co-morbidity also tends to be higher among patients with certain cancers, especially those associated with smoking, such as lung cancer, head and neck cancer and bladder cancer.²⁰ Studies based on administrative data often (but not always) report lower levels of co-morbidity than those based on medical – clinical reports.²⁰ In this study 95% of patients had at least one vote in Charlson index, a percentage much higher than the reported in other studies. This difference is likely due to the small sample of the study since it is a pilot study, which will be clarified as soon as the collection of data will be completed and make the final statistical analysis.

Despite these uncertainties, there is universal agreement that the co-morbidity is common among cancer patients. It is less clear whether cancer patients have higher co-morbidity rates than people of similar age without cancer. Some authors have generally found prevalence of co-morbidity among patients with cancer similar to populations without cancer.^{21,22} Conversely, other studies have reported that cancer patients have

somewhat higher levels of co-morbidity in the general population.^{23,24} Two studies compared the self-reported prevalence of diseases in the USA in people with a history of cancer and those who have no history of cancer.^{23,24} One study found that among people aged over 65 years, 3.9% of patients cancer reported having three or more chronic conditions, compared with 2.3% of people without a history cancer.²³ Similarly, another study found that with the exception of patients with melanoma, non-Hodgkin's lymphoma and prostate cancer, the cancer patients were more likely to report two or more diseases compared to others.²⁴ Also there are differences in the estimated prevalence of co-morbidity even within the same malignant diseases. For example, estimation of the prevalence of diabetes among patients with colon cancer is between 6 and 18%, hypertension between 16 and 47%, and chronic respiratory disease between 5 and 22%. These differences are due to the study population, the collection of data and definitions used for specific co-morbidities. Generally it has been shown that co-morbidity in cancer includes hypertension, respiratory disease, heart disease, cerebral vascular disease, history of cancer, arthritis and diabetes. In the present study, patients with colon cancer had high levels of co-morbidity. The most frequently found co-morbidities were hypertension, diabetes, metastasis, and atrial fibrillation.

REFERENCES

1. Grifasi C, Calogero A, Esposito A, Dodaro C. Perioperative care of elderly outpatient. A review. *Ann Ital Chir* 2014; 24: 85.
2. Greek Oncology Digestive Company. <http://www.digestiveoncology.org.gr>. Accessed February 2015
3. Ehlenbach CC, Tevis SE, Kennedy GD, Oltmann SC. Preoperative impairment is associated with a higher postdischarge level of care. *J Surg Res* 2015; 193: 1-6.
4. Pellino G, Sciaudone G, Candilio G, et al. Preventive NPWT over closed incisions in general surgery: Does age matter? *Int J Surg* 2014; 12(Suppl 2): S64-S68.
5. Erichsen R, Horváth-Puhó E, Iversen LH, Lash TL, Sørensen HT. Does comorbidity interact with colorectal cancer to increase mortality? A nationwide

population-based cohort study. *Br J Cancer* 2013; 109: 2005-2013.

6. Ostenfeld EB, Nørgaard M, Thomsen RW, Iversen LH, Jacobsen JB, Søgaard M. Comorbidity and survival of Danish patients with colon and rectal cancer from 2000-2011: a population-based cohort study. *Clin Epidemiol* 2013; 5(Suppl 1): 65-74.
7. Cai X, Wu H, Peng J, et al. Tolerability and outcomes of radiotherapy or chemoradiotherapy for rectal cancer in elderly patients aged 70 years and older. *Radiat Oncol* 2013; 8: 86.
8. Adami HO, Hunter D, et al, Eds. (2008). Textbook of Cancer Epidemiology. New York, Oxford University Press.
9. Wu CY, Hu HY, Pu CY, et al. Pulmonary tuberculosis increases the risk of lung cancer: a population-based cohort study. *Cancer* 2011; 117: 618-624.
10. Extermann, M. Interaction between comorbidity and cancer. *Cancer Control* 2007; 14: 13-22.
11. Hensel M, Goetzenich A, Lutz T, et al. HIV and cancer in Germany. *Deutsches Arzteblatt International* 2011; 108: 117-122.
12. Bartosch-Harlid A, Andersson R. Diabetes mellitus in pancreatic cancer and the need for diagnosis of asymptomatic disease. *Pancreatology* 2010; 10: 423-428.
13. Tabares-Seisdedos R, Dumont N, Baudot A, et al. No paradox, no progress: inverse cancer comorbidity in people with other complex diseases. *Lancet Oncology* 2011; 12: 604-608.
14. Din FV, Theodoratou E, Farrington SM, et al. Effect of aspirin and NSAIDs on risk and survival from colorectal cancer. *Gut* 2010; 59: 1670-1679.
15. Lee L, Cheung WY, Atkinson E, Krzyzanowska MK. Impact of comorbidity on chemotherapy use and outcomes in solid tumors: a systematic review. *J Clin Oncol* 2011; 29: 106-117.
16. Tammemagi C, Nerenz D, Neslund-Dudas C, Feldkamp C, Nathanson D. Comorbidity and survival disparities among black and white patients with breast cancer. *JAMA* 2005; 294: 1765-1772.
17. Gonzalez EC, Ferrante JM, Van Durme DJ, Pal N, Roetzheim RG. Comorbid illness and the early detection of cancer. *Southern Med J* 2001; 94: 913-920.
18. Sarfati D, Blakely T, Pearce N. Measuring cancer survival in populations: relative survival versus cancer specific survival. *Int J Epidemiol* 2010; 39: 598-610.
19. Patnaik JL, Byers T, Diquiseppe C, Denberg TD, Dabalea D. The influence of comorbidities on overall survival among older women diagnosed with breast cancer. *J Natl Cancer Inst* 2011; 103: 1101-1111.
20. Coebergh JW, Janssen-Heijnen ML, Razenberg PP. Prevalence of co-morbidity in newly diagnosed patients with cancer: a population-based study. *Crit Rev Oncol Hematol* 1998; 27: 97-100.
21. Zeber JE, Copeland LA, Hosek BJ, et al. Cancer rates, medical comorbidities, and treatment modalities in the oldest patients. *Crit Rev Oncol Hematol* 2008; 67: 237-242.
22. Harlan LC, Klabunde CN, Ambs AH, et al. Comorbidities, therapy, and newly diagnosed conditions for women with early stage breast cancer. *J Cancer Surviv* 2009; 3: 89-98.
23. Hewitt M, Rowland JH, Yancik R. Cancer survivors in the United States: age, health, and disability. *J Gerontol A Biol Sci Med Sci* 2003; 58: 82-91.
24. Smith AW, Reeve BB, Bellizzi KM, et al. Cancer, comorbidities, and health-related quality of life of older adults. *Health Care Financ Rev* 2008; 29: 41-56.

LLETZ Cone biopsy for cervical intraepithelial neoplasia

Analysis of sensitivity and specificity of colposcopy and cytology

D. Tsolakidis, E. Klonos, S. Pitis, T. Mikos, T. Theodoridis,
A. Papanikolaou, B.C. Tarlatzis

First Department of Obstetrics and Gynaecology, Papageorgiou General Hospital and Aristotle University of Thessaloniki, Thessaloniki, Greece

ABSTRACT

AIM: The aim of this retrospective study is to evaluate the results of cytology and colposcopy in relation to the final histological diagnosis of women undergoing Large Loop Excision of the Transformation Zone (LLETZ) cone biopsy. **MATERIAL AND METHODS:** Patients with abnormal cytology results, at least ASCUS (Atypical Squamous Cells of Undetermined Significance), who were examined at the Oncology Unit of the First Department of Obstetrics and Gynaecology between 2008 and 2014 were included in the study. The sensitivity and specificity of the cytology results and colposcopy were determined for the diagnosis of low grade (LGSIL) and high grade (HGSIL) intraepithelial neoplasia of the cervix in relation to the final histological results. Additionally, the final histological results of the cones, the cone biopsy margins and the frequency of relapse were noted. **RESULTS:** From the total of 129 patients who underwent colposcopy due to abnormal cytology test results, 63 underwent LLETZ cone biopsy. In 12 (19%) of the 63 patients LGSIL was diagnosed, in 41 (65%) patients HGSIL, in 2 (3%) cases invasive cancer, and in 3 (5%) cases chronic cervicitis, while in 5 (8%) cases no residual disease was found in the cone. The sensitivity and specificity of the cytology for LGSIL lesions were 40% and 75%, and of the colposcopy 90% and 77%, respectively. Regarding HGSIL lesions, the sensitivity and specificity of the cytology results were 41% and 80%, and colposcopy 78% and 80% respectively. The sensitivity of colposcopy was significantly better ($p=0.0002$). In three patients (4.5%) the cone borders were positive and four patients (6%) showed relapse of LGSIL after a follow-up of 20 months. **CONCLUSIONS:** Colposcopy is more sensitive than cytology to accurate diagnose cervical dysplasia. LLETZ cervical cone biopsy is a successful treatment method of cervical intraepithelial neoplasia.

KEY WORDS: cervical dysplasia, cervical intraepithelial neoplasia, colposcopy, cytology, LLETZ cone biopsy

INTRODUCTION

The Large Loop Excision of the Transforma-

Correspondence address:

Eleftherios Klonos, First Department of Obstetrics and Gynaecology, Papageorgiou General Hospital, Pavlos Melas, 564 29 Thessaloniki, Greece
e-mail: le.klonos@gmail.com

tion Zone (LLETZ) cone biopsy constitutes clearly the treatment of choice for cervical intraepithelial neoplasia after having been diagnosed with colposcopy. The method's main advantage is the performance in an outpatient setting with a low bleeding risk and good and immediate cicatrization.¹ Examination of the removed tissue results in accurate determination of the lesion's pathology, contributing to proper planning of the patient's management.² Finally, an equally important advantage in comparison with other therapeutic modalities is the low cost, which in combination with the convenience of the process can sometimes lead to irrational use and overtreatment.³

The aim of this retrospective study is to evaluate the results of abnormal cytology, at least ASCUS (Atypical Squamous Cells of Undetermined Significance), and colposcopy findings in relation to the final histological results of the cone biopsy.

MATERIAL AND METHODS

A total number of 129 patients with an age range of 17 to 63 (average age 33 years and standard deviation (SD): ± 9.3) underwent colposcopy in the First Department of Obstetrics and Gynaecology from 2008 to 2014. The sensitivity and specificity of the cytology and colposcopy results for low grade (LGSIL) and high grade (HGSIL) intraepithelial neoplasia of the cervix were calculated, comparing the results with the final histology.

RESULTS

Of the total of 129 patients (Figure 1), who had been examined by colposcopy, 76% underwent punch biopsies, while 93% were diagnosed with at least ASCUS cytology. From the total of 129 patients, 63 underwent LLETZ cone biopsy. In 12 (19%) of the 63 patients LGSIL was diagnosed, in 41 (65%) patients HGSIL, in 2 (3%) cases invasive cancer, and in 3 (5%) cases chronic cervicitis, while in 5 (8%) cases no residual disease was found in the cone.

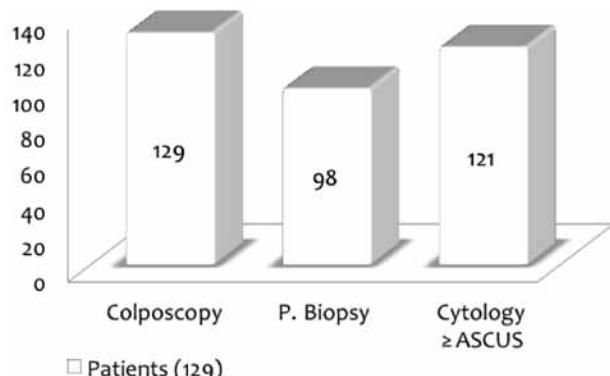


Figure 1. Initial diagnostic approach for the 129 patients.

Regarding the treatment of intraepithelial neoplasia, the therapeutic management included LLETZ cone biopsy (55%), laser vaporization (35%), cone biopsy using a laser device (5.5%) and cone biopsy with a scalpel (4.5%). The average length of the cones was 2.5 cm (SD: ± 0.8), the average width 1.6 cm (SD: ± 0.7), while the average volume in a total number of 40 cones was 1.5 ml (SD: ± 0.5). In 4.5% of the cone specimen the margins were positive for malignant cells, while the recurrence rate was 6%.

The sensitivity of cytology demonstrating the correct (histological) diagnosis was 40% for LGSIL lesions and 41% for HGSIL lesions (Figure 2), while the specificity was substantially higher, being 75% for LGSIL lesions and 80% for HGSIL lesions.⁴

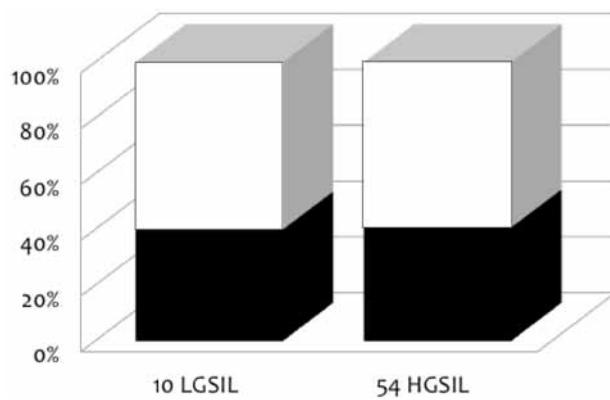
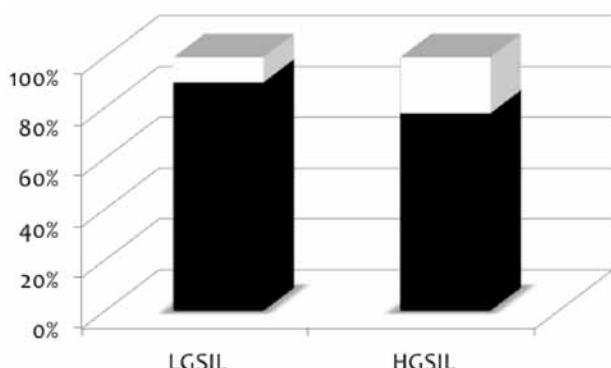


Figure 2. The sensitivity of cytology to detect LGSIL and HGSIL lesions.

On the other hand comparing the sensitivity and specificity rates of colposcopy in relation to the final histological results, a more improved and reliable accuracy was clearly observed.⁵ The sensitivity was 90% for LGSIL and 78% for HGSIL (Figure 3), while the specificity was 77% and 80%, respectively.

DISCUSSION

Considering that the cervical cancer is one of the most frequent gynaecological cancers and the second leading cancer cause of death in females, it is clear that it is importance to correctly and timely diagnose and treat even at the CIN level, in order to reduce the invasive cervical cancer rate.^{6,7}


LLETZ cone biopsy seems to be a successful method of treatment of cervical intraepithelial neoplasia with less blood loss, good healing, low cost and the flexibility of taking part in outpatient level.⁹ A prerequisite for the effectiveness of the cone biopsy is the assessment of the pathological region due colposcopy.¹⁰ The present study demonstrates the higher sensitivity and specificity rate of the colposcopy compared to cytology and particularly for dividing the low from the high grade cervical neoplasia.⁹

This distinction seems very important, based on references which analyze the evolution rate of the low grade to high from 10% to 20% and the

change rate from high grade to invasive cancer from 12% to 70%.^{11,12} This significant rate of malignancy transformation represents the reason for the investigation of proper and earlier diagnosis and treatment of cervical lesions.⁶

REFERENCES

- ASCP – 2006 Consensus guidelines for the management of women with abnormal cervical screening tests. *J Low Genit Tract Dis* 2007; 11: 223-239.
- Bryson P, Stulberg R, Shepherd L, McLellard K, Jeffrey J. Is electrosurgical loop excision with negative margins sufficient treatment for cervical ACIS? *Gynecol Oncol* 2004; 93: 465-468.
- Schwarz TM, Kolben T, Gallwas J, Crispin A, Dannecker C. Comparison of two surgical methods for the treatment of CIN: classical LLETZ (large-loop excision of the transformation zone) versus isolated resection of the colposcopic apparent lesion - study protocol for a randomized controlled trial. *Trials* 2015; 16: 225.
- Buxton EJ, Luesley SM, Shafi MI, et al. Colposcopically directed punch biopsy: a potentially misleading investigation. *Br J Obstet Gynaecol* 1991; 98: 1273-1276.
- World Health Organization. Guidelines for screening and treatment of precancerous lesions for cervical cancer prevention. WHO guidelines 2013. http://www.who.int/reproductivehealth/publications/cancers/screening_and_treatment_of_precancerous_lesions/en/. Accessed May 30, 2016.
- Garcia Ramos AM, Garcia Ramos ES, Dos Reis HL, de Rezende RB. Quality evaluation of cone biopsy specimens obtained by large loop excision of the transformation zone. *J Clin Med Res* 2015; 7: 220-224.
- Barut MU, Kale A, Kuyumcuoglu U, et al. Analysis of sensitivity, specificity, and positive and negative predictive values of smear and colposcopy in diagnosis of premalignant and malignant cervical lesions. *Med Sci Monit* 2015; 21: 3860-3867.
- Liu AH, Gold MA, Schiffman M, et al. Comparison of colposcopic impression based on live colposcopy and evaluation of static digital images. *J Low Genit Tract Dis* 2016; 20:154-161.
- Martin - Hirsch PP, Paraskevaidis E, Bryant A, Dickinson HO. Surgery for cervical intraepithelial neoplasia. *Cochrane Database Syst Rev* 2013; 12: CD001318.
- Kabaca C, Koleli I, Sariibrahim B, et al. Is cervical

Figure 3. The sensitivity of colposcopy to detect LGSIL and HGSIL lesions.

punch biopsy enough for the management of low-grade cervical intraepithelial neoplsia? *J Low Genit Tract Dis* 2014; 18: 240-245.

11. Mustafa RA, Santesso N, Khatib R, et al. Systematic reviews and meta-analyses of the accuracy of HPV tests, visual inspection with acetic acid, cytology and colposcopy. *Int J Gynaecol Obstet* 2016; 132: 259-265.

12. Sanad AS, Ibrahim EM, Gomaa W. Evaluation of cervical biopsies guided by visual inspection with acetic acid. *J Low Genit Tract Dis* 2014; 18: 21-25.

Diagnosis of recurrent laryngeal carcinoma after (chemo)radiation and its salvage surgery

L. van der Putten,¹ C.R. Leemans,² R. de Bree³

¹Department of Otolaryngology – Head and Neck Surgery, Medical Center Alkmaar, Alkmaar, ²Department of Otolaryngology – Head and Neck Surgery, VU University Medical Center Amsterdam, ³Department of Head and Neck Surgical Oncology, UMC Utrecht Cancer Center, University Medical Center Utrecht; The Netherlands

ABSTRACT

The detection of recurrent laryngeal carcinoma after radiotherapy may be difficult due to difficulties in differentiation between recurrent disease and postradiation effects. If laryngeal recurrence after radiotherapy is detected, salvage surgery in selected patients is the only curative treatment option. However, salvage surgery is associated with high complication rates, particularly pharyngocutaneous fistula formation. Aspects of diagnosis and salvage laryngectomy are discussed.

KEY WORDS: laryngeal carcinoma, recurrence, diagnosis, salvage laryngectomy, survival, complications

INTRODUCTION

Squamous cell carcinoma of the mucosal lining, is the most frequent malignancy of the head and neck region, and accounts for 4% of all malignant tumours worldwide. The incidence increases with age, with most patients over the age of 55. More than two thirds of patients with head and neck squamous cell carcinoma (HNSCC) present with advanced stage disease. Laryngeal carcinoma is the most frequent tumour within the head and neck in Europe.¹

In the treatment of laryngeal cancer preservation of function without compromising chances of cure is challenging. The larynx harbours func-

tions of vocalization, swallowing and respiration. Preservation of an intelligible voice is an important consideration in choosing a treatment modality.

Patients with early-stage disease can very effectively be treated with single-modality larynx-sparing approaches. Small superficial cancers are successfully treated by radiation or surgery alone, including endoscopic laser excision surgery.²⁻⁵ Reviews on the outcomes of radiotherapy and laser resections suggest comparable local control

Corresponding author:

R. de Bree, Department of Head and Neck Surgical Oncology, UMC Utrecht Cancer Center, University Medical Center Utrecht, Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
E-mail: r.debree@umcutrecht.nl

and survival with similar low risks of major complications,^{6,7} although no randomized controlled trial is performed.⁸ Laser resection is an effective, single use, relatively low-cost treatment which can be repeated.^{9,10} Lesions that are deeper infiltrating or indistinct from non-tumourous tissue, especially those arising in the context of widespread, abnormal-appearing mucosa, seem to be more suitable for radiation therapy.¹¹⁻¹³

In the last decades the treatment of advanced laryngeal carcinoma has evolved. Advanced laryngeal carcinoma was historically primarily treated by surgery (laryngectomy), but more recently the trend has shifted to (chemo)radiation. Non-surgical treatment is aimed at preservation of voice, normal respiration and swallowing and reserves surgery for salvaging purpose if needed. Two clinical studies had major effects on the management of advanced laryngeal cancer. The first in 1991, found that induction chemotherapy followed by definitive radiotherapy resulted in little difference in survival compared to patients receiving total laryngectomy and postoperative radiotherapy.¹⁴ The second, in 2003, reported that concurrent chemotherapy and radiotherapy were superior to sequential chemoradiation or radiotherapy alone for achieving local and regional control when applied to stage III and IV laryngeal cancer with T2, T3, or “limited” T4 tumours.¹⁵

Standard fractionation radiotherapy (60-70 Gy at 1.8-2 Gy fraction doses) is the most commonly used modality for early stage cancer.¹⁶ Hyperfractionation or accelerated fractionation radiotherapy have shown a higher local control rate with more acute adverse effects, as compared to standard fractionation.¹⁷⁻¹⁹ Since a decade intensity-modulated radiation therapy (IMRT) has been incorporated into clinical use, a dynamic radiotherapy technique with the ability to spare vital organs, such as salivary glands, orbital tissue and the central and spinal nervous tissue.^{20,21}

For advanced laryngeal carcinoma the combination of radiotherapy and chemotherapy is preferred. Concurrent chemoradiotherapy with

a platinum-based chemotherapy has become the standard of care.¹⁵ The most often used chemoradiation scheme in our centres consists of 7 weeks radiotherapy (fraction dose 2 Gy, 5x/week) combined with cisplatin (3 courses of 100 mg/m² week 1, 4 and 7 of radiotherapy).

Although many larynges have been saved by (chemo)radiation, increasing concern arises about late toxicity and decreased survival,^{22,23} which might be (partially) attributed to inappropriate patient selection for chemoradiation.^{24,25} Especially patients with the most advanced stage primary laryngeal carcinoma (stage IV with cartilage invasion or involvement of the soft tissues of the neck) and expected poor tolerance of treatment seem to have better survival chances with primary laryngectomy.²⁵⁻²⁸

LOCAL RECURRENCES

A local recurrence is defined according to clinical criteria as the occurrence of carcinoma within three years after and localized less than two cm from the first tumour. Tumours more than 2 cm away from or after more than three years after the primary tumour are referred to as a second primary tumour.²⁹

When cancer cells have remained in the patient this can be designated residual disease and outgrowth of these cells is a possible cause of local recurrent cancer. Sometimes these cells can only be detected by sensitive molecular methods and are referred to as ‘minimal residual cancer’.³⁰ Also, fields of genetically altered cells surrounding and in the neighbourhood of the tumour can be left behind and give rise to a local recurrence, also known as ‘second field tumours’.^{30,31}

The local recurrence rate of laryngeal carcinoma after non-surgical treatment has been reported to be 20-46%, depending on subsite and tumour stage.^{15,32-35} Surveillance is especially crucial in the first 2-3 years because two-thirds of the local recurrences and persistent or delayed lymph node metastases present in this period.^{36,37} Prognosis of

patients with a recurrence depends on the time of detection, since late detection is associated with poor survival rates.³⁸⁻⁴¹

Detection of local recurrence

The detection of recurrent laryngeal carcinoma after (chemo)radiation can be difficult. Symptoms like voice deterioration, pain, dyspnoea and dysphagia may be caused by a local recurrence, but can also be the result of post-radiotherapy changes, and are neither very sensitive nor specific.⁴²

In daily clinical practice standard follow-up consists of physical examination with indirect and fiberoptic laryngoscopy, combined with imaging in selected cases. Computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound are the anatomic imaging modalities used for detection of recurrent laryngeal carcinoma.

The value of physical examination and anatomic imaging is sometimes limited in the detection of recurrence because of the (chemo)radiation induced changes, such as oedema, hyperaemia and fibrosis. Conventional imaging depends on soft tissue distortion and contrast enhancement and these are noted in both therapy changes and recurrent tumour. There is growing evidence that these modalities have limitations in their diagnostic accuracy.⁴³⁻⁴⁸

In general direct laryngoscopy with biopsies under general anaesthesia in case of a suspected recurrence.⁴² However, it often takes several laryngoscopies to detect a recurrence: 31% of the initial laryngoscopies was false-negative (recurrence within 6 months).⁴² Furthermore, trauma of multiple biopsies in heavily radiated tissue may initiate superimposed infection, chondritis, failure to heal and further oedema.⁴⁹ On the other hand, some direct laryngoscopies under general anaesthesia are performed without showing recurrence and should thus be classified as possibly preventable. In conclusion, there is room for improvement of the diagnostic work-up of these patients.

18F-FDG-PET plays an important growing role in staging, restaging, monitoring treatment

and predicting prognosis in patients who have head and neck cancers.⁵⁰⁻⁵⁴ It may be particularly useful to distinguish post-treatment changes from recurrent tumour following radiotherapy.⁵⁵ For this indication 18F-FDG-PET with or without CT has proven to be more accurate when compared with conventional imaging modalities.^{46,56} Sensitivity and specificity of 18F-FDG PET for detection of residual or recurrent HNSCC were 92-94% and 82-87%, respectively, in meta-analysis.^{57,58}

However, infection, inflammation, ulceration and necrosis are known post irradiation sequels associated with increased metabolic activity. As a result, PET scans can be falsely reported as tumour-positive and specificity decreases. To avoid false-positive 18F-FDG accumulation and to enable small residual disease grow to a detectable size, post(chemo)radiation evaluation of the larynx and neck should be done at least 2 months following treatment.^{52,56,57,59-62} Although specificity after radiotherapy can be disappointing, sensitivity of 18F-FDG-PET is high.

Innovation in PET is focused on improving the poor quality of anatomic localization (using PET/CT and PET/MRI) and limited spatial resolution, and on the development of more specific tracers. When anatomical data is added, it may be less difficult to distinguish between metabolically active benign versus malignant tissue. In general, the combined use of 18F-FDG-PET and contrast-enhanced CT provides similar sensitivity but improved specificity and diagnostic confidence, compared with 18F-FDG-PET alone.^{63,64} However, a systematic review and meta-analysis did not find a clear benefit of PET/CT over PET alone in head and neck cancer patients following (chemo)radiotherapy or as post-treatment surveillance.^{57,58,65} Previous PET/CT research has focused on SUV (standardized uptake value) to differentiate between tumour and therapy-induced inflammation. There are no standardized cut-off SUVs to identify residual or recurrent disease in patients with head and neck cancer.⁶⁶

In a systematic review, the pooled sensitivity

and specificity of 18F-FDG-PET for the detection of recurrent laryngeal carcinoma after radiotherapy were reported as 89% and 74%, respectively, with a mean prevalence rate of recurrence of 50%.⁶⁷ In a diagnostic randomized clinical trial of 150 patients with suspicion of recurrent laryngeal carcinoma after radiotherapy a conventional strategy in which all patients underwent direct laryngoscopy under general anaesthesia with taking of biopsies was compared with a 18F-FDG-PET based strategy in which patients only after positive or equivocal PET underwent direct laryngoscopy. Forty-five patients (30%) had histopathologically confirmed local disease within 6 months after randomization. The indication for direct laryngoscopy was futile in 53 out of 74 patients (72%) in the conventional strategy, compared to 22 out of 76 (29%) in the PET-based one. This difference can be interpreted as 2.3 patients to be evaluated with PET to avoid at least one unnecessary indication for direct laryngoscopy under general anaesthesia. Thirty PET scans were true-negative and 1 was false-negative. Safety of the PET-based strategy was confirmed; no adverse effects on the operability of a recurrence or surgical margins of the salvage laryngectomy in the PET-based group. This trial showed that in patients suspicious for recurrent laryngeal carcinoma after radiotherapy, PET as the first diagnostic procedure can reduce the need for direct laryngoscopy by more than 50% without jeopardizing quality of treatment.⁶⁸

Laryngectomy as salvage

Salvage surgery, if possible, is the only therapeutic option with curative intent for proven residual or locally recurrent carcinoma after (chemo)radiation. For laryngeal carcinoma salvage surgery mostly consists of total (pharyngo-)laryngectomy which can be combined with uni- or bilateral neck dissection. In selected cases postoperative re-irradiation can be regarded. In certain cases, palliative chemotherapy may be the most appropriate therapy, with variable low response rates.

Total laryngectomy is widely recognized as

one of the surgical procedures with the most impact on patients. Surgical resection compromises voice, swallowing, and the airway and may have a negative impact on the patient's quality of life. Social isolation, job loss, and depression are known sequels. The natural airway is altered by creating a permanent tracheostoma and normal vocal function is eliminated by removing the voice box. Surgical voice restoration using voice prosthesis is the optimal standard for rehabilitation in laryngectomees. The quality of voice is variable,⁶⁹ but does allow patients to reintegrate into working life.

Various types of open function preservation surgery have been described to avoid total laryngectomy. Partial laryngectomy is mainly performed to allow patients to speak without a stoma, and to minimize the risk of complications. Examples are horizontal and vertical partial laryngectomies or supracricoid laryngectomy.^{16,70}

Nevertheless, for most recurrences, partial laryngectomy is no curative option and total laryngectomy will be the only operation of choice. Previous studies showed that depending on the primary tumour site most recurrences are transglottic and largely advanced (rT3-T4).⁷¹ Also, small fields of residual tumour have been found in apparently normal areas of the laryngectomy specimen, indicating the extensiveness of recurrent disease.^{43,72} Salvage partial laryngectomy seems only suitable in carefully selected patients and indications for this form of surgery vary globally.⁷²

We recently performed studies on salvage laryngectomy after (chemo)radiation. In case of proven locoregional recurrence, salvage surgery is an option for a selected group of patients. Younger patients with laryngeal instead of hypopharyngeal recurrence are more often candidates for salvage surgery, probably because they have less co-morbidity and are able to undergo surgery. Salvage laryngectomy with lymph node dissection offers good oncologic and functional outcome in a selected group of patients: after radiotherapy and chemoradiotherapy 5-year local control rates of

70% and 58%, and 5-year overall survival rates of 50% and 27% were found, respectively.⁷³ This is in line with 5-year locoregional control rates of 70% and 5-year overall survival of 31-57% reported by other studies.⁷⁴⁻⁷⁶ Locoregional control rate after salvage total laryngectomy for recurrent disease is dependent on the T-stage. The locoregional control rate is around 50-80% for T2,^{23,77-81} 50% for T3,^{77,82-84} and 20-30% for T4 tumours.^{77,85} Besides surgical margins, no independent predictor for survival was found. Although patients were meticulously selected for salvage total laryngectomy, the incidence of positive surgical margins was still 10%, also in line with previous studies.^{75,86-89}

Salvage surgery after radiotherapy is known to result in higher complication rates than primary surgery, with total complication rates up to 77%.⁹⁰⁻⁹⁶ The addition of chemotherapy increases the complication risk even further.⁹⁷ Problems related to local wound healing, especially the development of pharyngocutaneous fistula, constitute the most common postoperative complication after salvage total laryngectomy.^{90,98-102}

We found a total complication rate of 56% after radiotherapy and 73% after chemoradiotherapy, with fistula in 30% and 23% of the patients, respectively.⁷³ Other risk factors associated with fistula are: tumour subsite, T-stage, postoperative haemoglobin <12.5 g/L and positive surgical margins.⁹⁶ Bilateral PTLND was also associated with significantly more fistulae than unilateral PTLND (40% versus 22%), suggesting a need for better selection for contralateral PTLND.¹⁰³ The use of a pectoralis major flap as a protective layer between mucosa and skin reduces the risk of fistula formation.⁹⁰⁻¹⁰⁴ Besides the use of pectoralis major flaps, other factors may affect the risk of fistula formation; e.g. the closure technique of the surgical defect, the start of oral intake, the use of a salivary stent and the use of antibiotics.⁹⁰⁻¹⁰⁵ A salivary bypass tube is used by some clinics for circumferential fasciocutaneous reconstructions to reduce late stricture formation and may also reduce the frequency of fistula.¹⁰⁶ There are no uni-

form guidelines regarding these factors. Research focusing on the optimal peri-operative protocol, specific for salvage laryngectomy, is warranted.

Because survival rates after salvage surgery can be disappointing, and surgery is extensive with a considerable risk of complications, clear indications for the selection of patients for salvage surgery are needed to operate only on patients with reasonable survival chances and to exclude patients with irresectable disease. The same holds true for the extent of surgery. No unnecessary extensive surgery should be performed, and survival should not be compromised.

CONCLUSIONS

In case of a proven recurrence, salvage surgery will be discussed. Selection criteria for salvage surgery and its extent need to be further specified and individualized. Algorithms for salvage surgery will primarily focus on optimizing of the survival rates, and secondarily on preventing of complications. Early and reliable detection of recurrence may increase survival chances. Wound healing related problems, particularly fistula formation, are the main complications after salvage surgery. In the era of personalized medicine, future research needs to be focused on the refinement of the treatment strategy and the post-treatment diagnostic strategy for detection of recurrence, with more individualized selection criteria. Numerous patient, tumour and treatment factors need to be considered. Personalized medicine will be the future of laryngeal cancer diagnosis and treatment.

REFERENCES

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. *CA Cancer J Clin* 2016; 66: 7-30.
2. Silver CE, Ferlito A: Surgery for cancer of the larynx and related structures. 2nd ed. Philadelphia, Pa: Saunders, 1996.
3. Wang CC, ed.: Radiation therapy for head and neck neoplasms. 3rd ed. New York: Wiley-Liss, 1997.

4. Thawley SE, Panje WR, Batsakis JG, Lindberg RD: Comprehensive management of head and neck tumors. 2nd ed. Philadelphia, Pa: WB Saunders, 1999.
5. Chepeha DR, Haxer MJ, Lyden T: Rehabilitation after treatment of head and neck cancer. In: DeVita VT Jr, Lawrence TS, Rosenberg SA: Cancer: Principles and Practice of Oncology. 9th ed. Philadelphia, Pa: Lippincott Williams & Wilkins, 2011, pp 781-788.
6. Mendenhall WM, Werning JW, Hinerman RW, Amdur RJ, Villaret DB. Management of T1-T2 glottic carcinomas. *Cancer* 2004; 100: 1786-1792.
7. Lüscher MS, Pedersen U, Johansen LV. Treatment outcome after laser excision of early glottic squamous cell carcinoma--a literature survey. *Acta Oncol* 2001; 40: 796-800.
8. Warner L, Chudasama J, Kelly CG, et al. Radiotherapy versus open surgery versus endolaryngeal surgery (with or without laser) for early laryngeal squamous cell cancer. *Cochrane Database Syst Rev* 2014; 12: CD002027.
9. Schrijvers ML, van Riel EL, Langendijk JA, et al. Higher laryngeal preservation rate after CO2 laser surgery compared with radiotherapy in T1a glottic laryngeal carcinoma. *Head Neck* 2009; 31: 759-764.
10. Goor KM, Peeters AJ, Mahieu HF, et al. Cordectomy by CO2 laser or radiotherapy for small T1a glottic carcinomas: costs, local control, survival, quality of life, and voice quality. *Head Neck* 2007; 29: 128-136.
11. Pfister DG, Laurie SA, Weinstein GS, et al. American society of clinical oncology clinical practice guideline for the use of larynx-preservation strategies in the treatment of laryngeal cancer. *J Clin Oncol* 2006; 22: 3693-3704.
12. Chera BS, Amdur RJ, Morris CG, Mendenhall WM. Carotid-sparing intensity-modulated radiotherapy for early-stage squamous cell carcinoma of the true vocal cord. *Int J Radiat Oncol Biol Phys* 2010; 77: 1380-1385.
13. Khan MK, Koyfman SA, Hunter GK, Reddy CA, Saxton JP. Definitive radiotherapy for early (T1-T2) glottic squamous cell carcinoma: a 20 year Cleveland Clinic experience. *Radiat Oncol* 2012; 7: 193.
14. The Department of Veterans Affairs Laryngeal Cancer Study Group. Induction chemotherapy plus radiation compared with surgery plus radiation in patients with advanced laryngeal cancer. *N Engl J Med* 1991; 324: 1685-1690.
15. Forastiere A, Goepfert H, Maor M, et al. Concurrent chemotherapy and radiotherapy for organ preserva-
tion in advanced laryngeal cancer. *N Engl J Med* 2003; 349: 2091-2098.
16. Nakayama M, Laccourreye O, Holsinger FC, Okamoto M, Hayakawa K. Functional organ preservation for laryngeal cancer: past, present and future. *Jpn J Clin Oncol* 2012; 42: 155-160.
17. Fu K, Pajak T, Trott A, et al. A radiation therapy oncology group (RTOG) phase III randomized study to compare hyperfractionation and two variants of accelerated fractionation to standard fractionation radiotherapy for head and neck squamous cell carcinoma: first report of RTOG 9003. *Head Neck* 2000; 48: 7-16.
18. Ermiş E, Teo M, Dyker KE, Fosker C, Sen M, Prestwich RJ. Definitive hypofractionated radiotherapy for early glottic carcinoma: experience of 55Gy in 20 fractions. *Radiat Oncol* 2015; 10: 203.
19. Moon SH, Cho KH, Chung EJ, et al. A prospective randomized trial comparing hypofractionation with conventional fractionation radiotherapy for T1-2 glottic squamous cell carcinomas: results of a Korean Radiation Oncology Group (KROG-0201) study. *Radiother Oncol* 2014; 110: 98-103.
20. Daly M, Le Q, Jain A, et al. Intensity-modulated radiotherapy for locally advanced cancers of larynx and hypopharynx. *Head Neck* 2011; 33: 103-111.
21. Studer G, Peponi E, Kloek S, Dossenbach T, Huber G, Glanzmann C. Surviving hypopharynx-larynx carcinoma in the era of IMRT. *Int J Radiat Oncol Biol Phys* 2010; 77: 1391-1396.
22. Machtay M, Moughan J, Trott A, et al. Factor associated with severe late toxicity after concurrent chemoradiation for locally advanced head and neck cancer: an RTOG analysis. *J Clin Oncol* 2008; 26: 3582-3589.
23. Hoffman HT, Porter K, Karnell LH, et al. Laryngeal cancer in the United States: changes in demographics, patterns of cure, and survival. *Laryngoscope* 2006; 116 (Suppl. 111): 1-13.
24. Olsen K. Reexamining the treatment of advanced laryngeal cancer. *Head Neck* 2010; 32: 1-6.
25. Forastiere AA, Weber RS, Trott A. Organ preservation for advanced larynx cancer: issues and outcomes. *J Clin Oncol* 2015; 33: 3262-3268.
26. Chen A, Halpern M. Factors predictive of survival in advanced laryngeal cancer. *Arch Otolaryngol Head Neck Surg* 2007; 133: 1270-1276.
27. Hartl DM, Brasnu DF, Shah JP, et al. Is open surgery for head and neck cancers truly declining? *Eur Arch*

Otorhinolaryngol 2013; 270: 2793-2802.

28. Grover S, Swisher-McClure S, Mitra N, et al. Total Laryngectomy Versus Larynx Preservation for T4a Larynx Cancer: Patterns of Care and Survival Outcomes. *Int J Radiat Oncol Biol Phys* 2015; 92: 594-601.

29. Braakhuis BJM, Tabor MP, Leemans CR, van der Waal I, Snow GB, Brakenhoff RH. Second primary tumors and field cancerization in oral and oropharyngeal cancer: molecular techniques provide new insights and definitions. *Head Neck* 2002; 24: 198-206.

30. Tabor MP, Brakenhoff RH, Ruijter-Schippers HJ, Kummer JA, Leemans CR, Braakhuis BJM. Genetically altered fields as origin of locally recurrent head and neck cancer: a retrospective study. *Clin Cancer Res* 2004; 10: 3607-3613.

31. Deganello A, Franchi A, Sardi I, Pignataro L, Leemans CR, Gallo O. Genetic alterations between primary head and neck squamous cell carcinoma and recurrence after radiotherapy recurrence, genetically related cancer, or second primary? *Cancer* 2010; 116: 1291-1297.

32. Le QTX, Fu KK, Kroll S, et al. Influence of fraction size, total dose and overall time on local control of T1-T2 glottic carcinoma. *Int J Radiat Oncol Biol Phys* 1997; 39: 115-126.

33. Mendenhall WM, Amdur RJ, Morris CG, Hinermann RW. T1-T2N0 squamous cell carcinoma of the glottic larynx treated with radiation therapy. *J Clin Oncol* 2001; 19: 4029-4036.

34. Hinerman RW, Mendenhall WM, Morris CG, Amdur RJ, Werning JW, Villaret DB. T3 and T4 true vocal cord squamous cell carcinomas treated with external beam irradiation: A single institution's 35-year experience. *Am J Clin Oncol* 2007; 30: 181-185.

35. Al-Mamgani A, Tans L, Rooij van P, Levendag P. A single-institutional experience of 15 years of treating T3 laryngeal cancer with primary radiotherapy, with or without chemotherapy. *Int J Radiation Oncol Biol Phys* 2012; 83: 1000-1006.

36. Leemans CR, Tiwari R, Nauta JJP, van der Waal I, Snow GB. Recurrence at the primary site in head and neck cancer and the significance of neck lymph node metastases as a prognostic factor. *Cancer* 1994; 73: 187-190.

37. Terhaard CH, Bongers V, van Rijk PP, Hordijk GJ. F-18-fluoro-deoxy-glucose positron-emission tomography scanning in detection of local recurrence after radiotherapy for laryngeal/hypopharyngeal cancer. *Head Neck* 2001; 23: 933-941.

38. Brenner B, Marshak G, Sulkes A, Rakowsky E. Prognosis of patients with recurrent laryngeal carcinoma. *Head Neck* 2001; 23: 531-535.

39. Goodwin WJ Jr. Salvage surgery for patients with recurrent squamous cell carcinoma of the upper aerodigestive tract: when do the ends justify the means? *Laryngoscope* 2000; 110: 1-18.

40. Kikuchi M, Shinohara S, Hino M, et al. Detection of subclinical recurrence or second primary cancer using 18 F-FDG PET/CT in patients treated curatively for head and neck squamous cell carcinoma. *Head Neck* 2016; 38(suppl 1):E511-8.

41. Zafero M. Surgical salvage of recurrent cancer of the head and neck. *Curr Oncol Rep* 2014; 16:386.

42. Brouwer J, Bodar EJ, de Bree R, et al. Detecting recurrent laryngeal carcinoma after radiotherapy: room for improvement. *Eur Arch Otorhinolaryngol* 2004; 261: 417-422.

43. Zbären P, Christe A, Caversaccio MD, Stauffer E, Thoeny HC. Pretherapeutic staging of recurrent laryngeal carcinoma: clinical findings and imaging studies compared with histopathology. *Otolaryngol Head Neck Surg* 2007; 137: 487-491.

44. de Bree R, van der Putten L, Brouwer J, Castelijns JA, Hoekstra OS, Leemans CR. Detection of locoregional recurrent head and neck cancer after (chemo)radiotherapy using modern imaging. *Oral Oncol* 2009; 45: 386-393.

45. Greven KM, Williams DW 3rd, Keyes JW Jr, McGuirt WF, Watson NE Jr, Case LD. Can positron emission tomography distinguish tumor recurrence from irradiation sequelae in patients treated for larynx cancer? *Cancer J Sci Am* 1997; 3: 353-357.

46. Hermans R, Pameijer FA, Mancuso AA, Parsons JT, Mendenhall WM. Laryngeal or hypopharyngeal squamous cell carcinoma: can follow-up CT after definitive radiation therapy be used to detect local failure earlier than clinical examination alone? *Radiology* 2000; 214: 683-687.

47. Kitagawa Y, Nishizawa S, Sano K, et al. Prospective comparison of 18F-FDG PET with conventional imaging modalities (MRI, CT, and 67Ga scintigraphy) in assessment of combined intraarterial chemotherapy and radiotherapy for head and neck carcinoma. *J Nucl Med* 2003; 44: 198-206.

48. Al-Shwaiheen FA, Wang SJ, Uzelac A, Yom SS, Ryan WR. The advantages and drawbacks of routine magnetic resonance imaging for long-term post-treatment locoregional surveillance of oral cavity squamous

cell carcinoma. *Am J Otolaryngol* 2015; 36: 415-423.

49. Badahur S, Amatya RC, Kacker SK. The enigma of post-radiation oedema and residual or recurrent carcinoma of the larynx and pyriform sinus. *J Laryngol Otol* 1985; 99: 763-765.

50. Veit-Haibach P, Luczak C, Wanke I, et al. TNM staging with FDG-PET/CT in patients with primary head and neck cancer. *Eur J Nucl Med Mol Imaging* 2007; 34: 1953-1962.

51. Nahmias C, Carlson ER, Duncan LD, Blodgett TM, Kennedy J, Long MJ, Carr C, Hubner KF, Townsend DW. Positron emission tomography/computerized tomography (PET/CT) scanning for preoperative staging of patients with oral/head and neck cancer. *J Oral Maxillofac Surg* 2007; 65: 2524-2535.

52. Quon A, Fischbein NJ, McDougall IR, et al. Clinical role of 18F-FDG PET/CT in the management of squamous cell carcinoma of the head and neck and thyroid carcinoma. *J Nucl Med* 2007; 48: 58S-67S.

53. Zimmer LA, Branstetter BF, Nayak JV, Johnson JT. Current use of 18F-fluorodeoxyglucose positron emission tomography and combined positron emission tomography and computed tomography in squamous cell carcinoma of the head and neck. *Laryngoscope* 2005; 115: 2029-2034.

54. Tantiwongkosi B, Yu F, Kanard A, Miller FR. Role of (18)F-FDG PET/CT in pre and post treatment evaluation in head and neck carcinoma. *World J Radiol* 2014; 6: 177-191.

55. Robin P, Abgral R, Valette G, et al. Diagnostic performance of FDG PET/CT to detect subclinical HNSCC recurrence 6 months after the end of treatment. *Eur J Nucl Med Mol Imaging* 2015; 42:72-78.

56. Andrade RS, Heron DE, Degirmenci B, et al. Post-treatment assessment of response using FDG-PET/CT for patients treated with definitive radiation therapy for head and neck cancers. *Int J Radiat Oncol Biol Phys* 2006; 65: 1315-1322.

57. Isles MG, Mc Conkey C, Mehanna HM. A systematic review and meta-analysis of the role of positron emission tomography in the follow up of head and neck squamous cell carcinoma following radiotherapy or chemoradiotherapy. *Clin Otolaryngol* 2008; 33: 210-222.

58. Sheikhhahaei S, Taghipour M, Ahmad R, et al. Diagnostic accuracy of follow-up FDG PET or PET/CT in patients with head and neck cancer after definitive treatment: a systematic review and meta-analysis. *AJR Am J Roentgenol* 2015; 205: 629-639.

59. Greven KM, Williams DW 3rd, McGuirt WF Sr, et al. Serial positron emission tomography scans following radiation therapy of patients with head and neck cancer. *Head Neck* 2001; 23: 942-946.

60. Porceddu S, Jarmolowski E, Hicks R, et al. Utility of positron emission tomography for the detection of disease in residual neck nodes after (chemo) radiotherapy in head and neck cancer. *Head Neck* 2005; 27: 175-181.

61. Bar-Ad V, Mishra M, Ohri N, Intenzo C. Positron emission tomography for neck evaluation following definitive treatment with chemoradiotherapy for locoregionally advanced head and neck squamous cell carcinoma. *Rev Recent Clin Trials* 2012;7:36-41.

62. Leung AS, Rath TJ, Hughes MA, Kim S, Branstetter BF 4th. Optimal timing of first posttreatment FDG PET/CT in head and neck squamous cell carcinoma. *Head Neck* 2016; 38 (suppl 1): E853-E858.

63. Gordin A, Daitzchman M, Doweck I, et al. Fluoro-deoxyglucose-positron emission tomography/computed tomography imaging in patients with carcinoma of the larynx: diagnostic accuracy and impact on clinical management. *Laryngoscope* 2006; 116: 273-278.

64. Fakhry N, Lussato D, Jacob T, Giorgi R, Giovanni A, Zanaret M. Comparison between PET and PET/CT in recurrent head and neck cancer and clinical implications. *Eur Arch Otorhinolaryngol* 2007; 264: 531-538.

65. Gupta T, Master Z, Kannan S, et al. Diagnostic performance of post-treatment FDG PET or FDG PET/CT imaging in head and neck cancer: a systematic review and meta-analysis. *Eur J Nucl Med Mol Imaging* 2011; 38: 2083-2095.

66. Romesser PB, Qureshi MM, Shah BA, et al. Superior prognostic utility of gross and metabolic tumor volume compared to standardized uptake value using PET/CT in head and neck squamous cell carcinoma patients with intensity modulated radiotherapy. *Ann Nucl Med* 2012; 26: 527-534.

67. Brouwer J, Hooft L, Hoekstra OS, et al. Systematic review: accuracy of imaging tests in the diagnosis of recurrent laryngeal carcinoma after radiotherapy. *Head Neck* 2008; 30: 889-897.

68. de Bree R, van der Putten L, van Tinteren H, et al. Effectiveness of an 18F-FDG-PET based strategy to optimize the diagnostic trajectory of suspected recurrent laryngeal carcinoma after radiotherapy: The RELAPS multicenter randomized trial. *Radiother Oncol* 2016; 118: 251-256.

69. Kazi R, Singh A, De Cordova J, Clarke P, Harrington K, Rhys-Evans P. A new self-administered questionnaire to determine patient experience with voice prostheses (Blom-Singer valves). *J Postgrad Med* 2005; 51: 253-258.
70. Paleri V, Thomas L, Basavaiah N, Drinnan M, Mehanna H, Jones T. Oncologic outcomes of open conservation laryngectomy for radiorecurrent laryngeal carcinoma: a systematic review and meta-analysis of English-language literature. *Cancer* 2011; 117: 2668-2676.
71. Viani L, Stell PM, Dalby JE. Recurrence after radiotherapy for glottic carcinoma. *Cancer* 1991; 67: 577-584.
72. Kirchner JA. What have whole organ sections contributed to the treatment of laryngeal cancer. *Ann Otol Physiol Laryngol* 1989; 98: 661-667.
73. van der Putten L, Bree R, Doornaert PA, et al. Salvage surgery in post-chemoradiation laryngeal and hypopharyngeal carcinoma: outcome and review. *Acta Otorhinolaryngol Ital* 2015; 35: 162-172.
74. Clark JR, de Almeida J, Gilbert R, et al. Primary and salvage (hypo)pharyngectomy: analysis and outcome. *Head Neck* 2006; 28: 671-677.
75. Leon X, Quer M, Orus C, Lopez M, Gras JR, Vega M. Results of salvage surgery for local or regional recurrence after larynx preservation with induction chemotherapy and radiotherapy. *Head Neck* 2001; 23: 733-738.
76. Li M, Lorenz RR, Khan MJ, et al. Salvage laryngectomy in patients with recurrent laryngeal cancer in the setting of nonoperative treatment failure. *Otolaryngol Head Neck Surg* 2013; 149: 245-251.
77. Harwood AR, Hawkins NV, Beale FA, Rider WD, Bryce DP. Management of advanced glottic cancer, a 10 year review of the Toronto experience. *Int J Rad Oncol Biol Phys* 1979; 5: 899-904.
78. McLaughlin MP, Parsons JT, Fein DA, et al. Salvage surgery after radiotherapy failure in T1-T2 squamous cell carcinoma of the glottic larynx. *Head Neck* 1996; 18: 229-235.
79. Schwaab G, Mamelle G, Lartigau E, Parise O Jr, Wibault P, Luboinski B. Surgical salvage treatment of T1/2 glottic carcinoma after failure of radiotherapy. *Am J Surg* 1994; 168: 474-475.
80. Spector JG, Sessions DG, Chao KS, Hanson JM, Simpson JR, Perez CA. Management of stage II (T2N0M0) glottic carcinoma by radiotherapy and conservation surgery. *Head Neck* 1999; 21: 116-123.
81. Wiggenraad RG, Terhaard CHJ, Hordijk GJ, Ravasz LA. The importance of vocal cord mobility in T2 laryngeal cancer. *Radiat Oncol* 1990; 18: 321-327.
82. Lundgren JAV, Gilbert RW, van Nostrand AWP, Harwood AR, Keane TJ, Briant TD. T3N0M0 glottic carcinoma - a failure analysis. *Clin Otolaryngol* 1988; 13: 455-465.
83. Meredith AP de, Randall CJ, Shaw HJ. Advanced laryngeal cancer: A management perspective. *J Laryngol Otol* 1987; 101: 1046-1054.
84. Terhaard CHJ, Karim ABMF, Hoogenraad WJ, et al. Local control in T3 laryngeal cancer treated with radical radiotherapy, time dose relationship: the concept of nominal standard dose and linear quadratic model. *Int J Rad Oncol Biol Phys* 1991; 20: 1207-1214.
85. Parsons JT, Mendenhall WM, Stringer SP, Cassisi NJ. T4 laryngeal carcinoma: radiotherapy alone with surgery reserved for salvage. *Int J Rad Oncol Biol Phys* 1998; 40: 549-552.
86. McLaughlin MP, Parsons JT, Fein DA, et al. Salvage surgery after radiotherapy failure in T1-T2 squamous cell carcinoma of the glottic larynx. *Head Neck* 1996; 18: 229-235.
87. Parsons JT, Mendenhall WM, Stringer SP, Cassisi NJ, Million RR. Salvage surgery following radiation failure in squamous cell carcinoma of the supraglottic larynx. *Int J Radiat Oncol Biol Phys* 1995; 32: 605-609.
88. Pellini R, Manciocco V, Spriano G. Functional outcome of supracricoid partial laryngectomy with cricothyroidopexy: radiation failure vs previously untreated cases. *Arch Otolaryngol Head Neck Surg* 2006; 132: 1221-1225.
89. Tjho-Heslinga RE, Terhaard CH, Schouwenburg P, et al. T3 laryngeal cancer, primary surgery vs planned combined radiotherapy and surgery. *Clin Otolaryngol Allied Sci* 1993; 18: 536-540.
90. Ganly I, Patel S, Matsuo J, et al. Postoperative complications of salvage total laryngectomy. *Cancer* 2005; 103: 2073-2081.
91. Stankovic M, Milisavljevic D, Zivic M, Stojanov D, Stankovic P. Primary and salvage total laryngectomy. Influential factors, complications, and survival. *J BUON* 2015; 20: 527-539.
92. Sayles M, Grant DG. Preventing pharyngo-cutaneous fistula in total laryngectomy: a systematic review and meta-analysis. *Laryngoscope* 2014; 124: 1150-1163.
93. Lavertu P, Bonafede JP, Adelstein DJ, et al. Comparison of surgical complications after organ-preservation

therapy in patients with stage III or IV squamous cell head and neck cancer. *Arch Otolaryngol Head Neck Surg* 1998; 124: 401-406.

94. Schwartz SR, Yueh B, Maynard C, Daley J, Henderson W, Khuri SF. Predictors of wound complications after laryngectomy: a study of over 2000 patients. *Otolaryngol Head Neck Surg* 2004; 131: 61-68.

95. Nichols RD, Mickelson SA. Partial laryngectomy after irradiation failure. *Ann Otol Rhinol Laryngol* 1991; 100: 176-180.

96. Sayles M, Grant DG. Preventing pharyngo-cutaneous fistula in total laryngectomy: a systematic review and meta-analysis. *Laryngoscope* 2014; 124: 1150-1163.

97. Klozar J, Cada Z, Koslabova E. Complications of total laryngectomy in the era of chemoradiation. *Eur Arch Otorhinolaryngol* 2012; 269: 289-293.

98. Paydarfar JA, Birkmeyer NJ. Complications in head and neck surgery: a meta-analysis of postlaryngectomy pharyngocutaneous fistula. *Arch Otolaryngol Head Neck Surg* 2006; 132: 67-72.

99. Weber R. Outcome of salvage total laryngectomy following organ preservation therapy: the Radiation Therapy Oncology Group Trial 91-11. *Arch Otolaryngol Head Neck Surg* 2003; 129: 44-49.

100. Süslü N, Senirli RT, Günaydin RÖ, Özer S, Karakaya J, Hoşal AŞ. Pharyngocutaneous fistula after salvage laryngectomy. *Acta Otolaryngol* 2015; 135: 615-621.

101. Patel UA, Moore BA, Wax M, et al. Impact of pharyngeal closure technique on fistula after salvage laryngectomy. *JAMA Otolaryngol Head Neck Surg* 2013; 139: 1156-1162.

102. Liang JW, Li ZD, Li SC, Fang FQ, Zhao YJ, Li YG. Pharyngocutaneous fistula after total laryngectomy: A systematic review and meta-analysis of risk factors. *Auris Nasus Larynx* 2015; 42: 353-359.

103. van der Putten L, de Bree R, Kuik DJ, Doornaert P, Eerenstein SE, Leemans CR. Paratracheal lymph node dissection during laryngectomy after previous (chemo)radiotherapy: a retrospective analysis of complications and histopathological results. *Clin Otolaryngol* 2011; 36: 37-44.

104. Paleri V, Drinnan M, van den Brekel MW, et al. Vascularized tissue to reduce fistula following salvage total laryngectomy: a systematic review. *Laryngoscope* 2014; 124: 1848-1853.

105. Li RJ, Zhou XC, Fakhry C, et al. Reduction of Pharyngocutaneous Fistulae in Laryngectomy Patients by a Comprehensive Performance Improvement Intervention. *Otolaryngol Head Neck Surg* 2015; 153: 927-934.

106. Clark JR, Gilbert R, Irish J, Brown D, Neligan P, Gullane PJ. Morbidity after flap reconstruction of hypopharyngeal defects. *Laryngoscope* 2006; 116: 173-181.

Staging laparoscopy in gastric cancer

D. Stamatiou, E. de Bree, O. Zoras

Department of Surgical Oncology, Medical School of Crete University Hospital, Heraklion, Greece

ABSTRACT

Gastric cancer represents one of the most prevalent and deadly malignancy types globally. Although classic imaging techniques so far used for disease staging, such as computed tomography (CT), have proven efficacy in the detection of visceral metastases, their accuracy in the exclusion of peritoneal metastatic disease remains low, with a high rate of false negatives and a resultant high rate of unnecessary laparotomies, since the patients are inoperable at the time of the operation and should receive palliative chemotherapy instead. Laparoscopy, together with peritoneal cytology, suggests a recently endorsed, minimally invasive technique that achieves better sensitivity, specificity and accuracy in the staging of gastric cancer, compared with the classic imaging techniques. This review describes the technique's basic principles, compares its efficacy with that of the CT scan, mentions its main advantages and disadvantages, and suggests an algorithm for the management of patients with locally advanced gastric cancer, taking into consideration the experimental application of adjuvant Hyperthermic Intraperitoneal Chemotherapy (HIPEC).

KEY WORDS: gastric cancer, laparoscopy, cytology, staging, peritoneal metastases, HIPEC

INTRODUCTION

With about 990,000 new cases occurring every year globally,¹ gastric cancer represents the 5th most prevalent malignancy type and the 2nd in cancer mortality in the world.² Since gastric cancer is usually diagnosed in advanced stage, it has a poor prognosis, with high mortality/incidence ratio, while only about 50% of patients constitute candidates for curative treatment at the time of diagnosis.³

In patients without incurable factors, namely peritoneal disease, liver metastases and distant lymph node involvement, gastrectomy with associated lymph node dissection is the mainstay

of treatment, while chemotherapy is reserved for patients with any of the above factors.⁴

While various imaging methods are utilized to achieve proper staging for gastric cancer and exclusion of incurable disease,^{5,6} recent research showed that computed tomography (CT) has low sensitivity and specificity for the detection of peritoneal metastases.⁷ This review focuses on the current data available, considering the usefulness of laparoscopy and peritoneal cytology as staging tools in the evaluation of peritoneal metastatic

Correspondence address:

D. Stamatiou, MD, PhD, Department of Surgical Oncology, University Hospital, P.O. Box 1352, 71110 Heraklion, Greece, Tel.: +30-2810-392382, Fax: +30-2810-392382, E-mail: jpstamatiou@yahoo.gr

disease, in patients with locally advanced gastric cancer.

SURGICAL TECHNIQUE

With the patient in supine position under general anaesthesia, pneumoperitoneum, with a pressure of 10 mmHg is created and a 10 mm trocar is inserted in the umbilical region, through which a 30° optic is introduced. Two additional trocars, a 5 mm into the right upper quadrant and an 11/12 mm into the left flank, are subsequently inserted. Examination of the pelvis is facilitated by placement of the patient in the Trendelenburg position, while the upper abdomen is examined with the patient in the proclive position.^{5,6}

If ascites is present, collection of fluid for cytological analysis is performed. Thorough inspection of the pelvis, hepatic surface, gastrohepatic ligament, gastrocolic ligament, right and left paracolic gutters, transverse mesocolon surface and root of mesenteric artery is performed. The gastrocolic ligament is divided for better exposure of the retrogastric space, in cases of tumours that either involve the posterior gastric wall, or situated in the proximal stomach, also facilitating inspection of the posterior surface of the stomach as well as celiac trunk lymph nodes. Both suspicious lesions of the liver and peritoneal surface, or lymph nodes, are sampled and sent for freezing histopathological examination.⁸

The procedure can be complemented with peritoneal lavage and cytological examination, if neither ascites, nor visible neoplastic implants are evident. Lavage cytology includes instillation of 300 mL of normal saline into the right and left upper quadrants and pelvis, subsequent gentle agitation of the abdomen, and collection of the washings.⁹

DISCUSSION

Gastric cancer suggests one of the most common malignancies worldwide, while it usually has a grave prognosis, due to the fact that most

cases are discovered at an advanced stage, with only just above 50% constituting candidates for curative resection.⁶ CT with contrast, is so far considered the standard imaging technique for preoperative assessment. Although it represents the gold-standard tool for evaluation of both the local extension, as well as the presence of distant metastases, its accuracy in the detection of peritoneal disease is low.⁷ A falsely low staging of these patients, may result in an unnecessary laparotomy, increasing the intraoperative and post-operative morbidity, while delaying the initiation of either palliative or neoadjuvant chemotherapy.⁶

Staging laparoscopy has been proposed to achieve better accuracy compared with traditional imaging techniques, particularly in the detection of peritoneal metastases, therefore it has been proposed as a preoperative staging method.⁶ Especially small, suspicious peritoneal nodules, including those located in the subphrenic space or Douglas pouch,¹⁰ usually undetected by imaging techniques,^{11,12} can be detected with laparoscopy, which facilitates tissue magnification, while causing minimal tissue damage.¹³ Compared with state of the art CT, laparoscopy had a sensitivity of 87%, specificity of 100% and accuracy of 91%, while the corresponding values for CT were 45%, 87% and 62% respectively,¹⁴ and similar results were reported by other studies.^{15,16} In a recent review, staging laparoscopy for gastric cancer had sensitivity, specificity and accuracy of 73.7-100%, 83-100% and 93.4-100% respectively.¹⁷

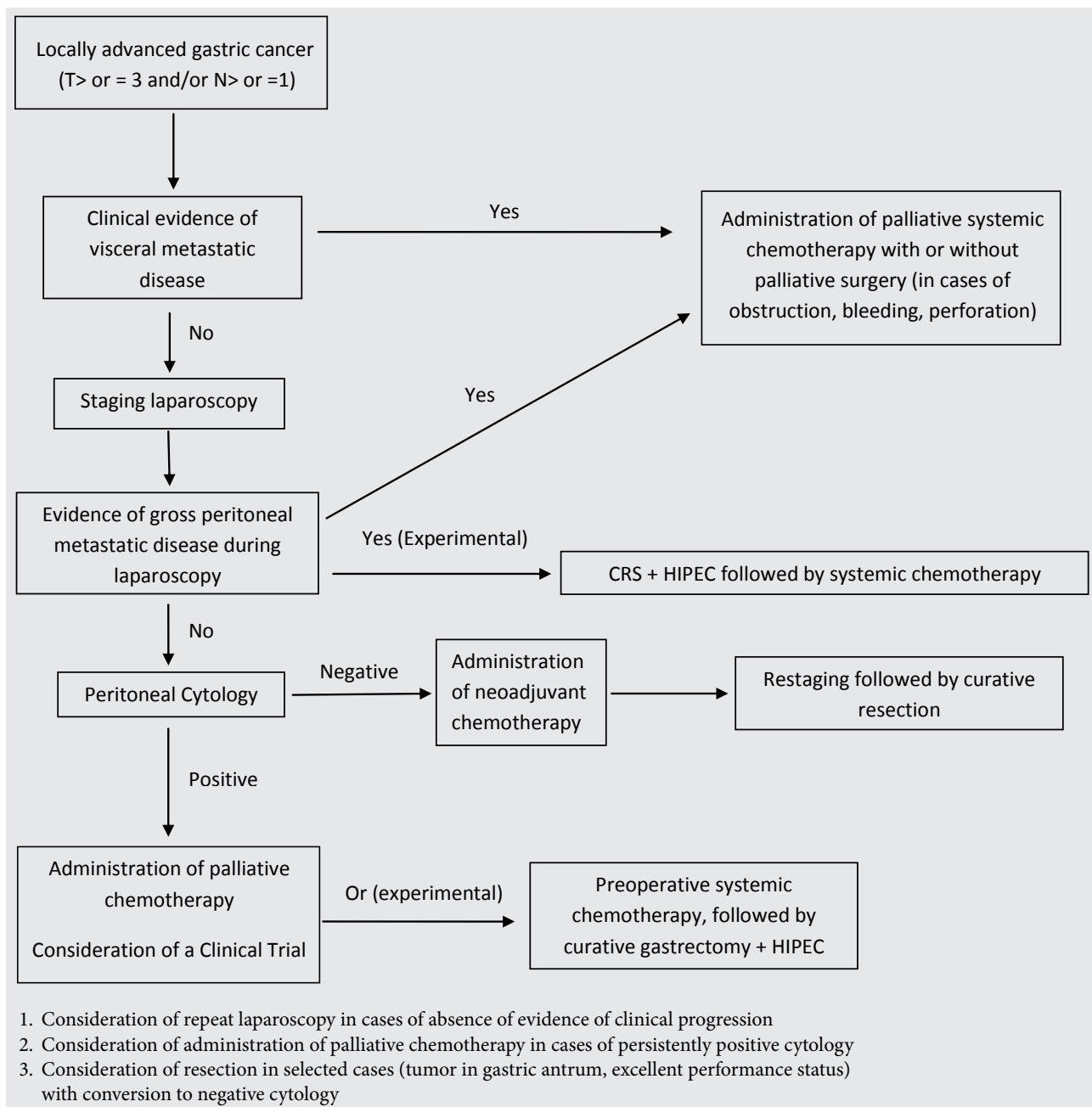
Ever since staging laparoscopy for the assessment of gastric cancer was introduced in 1984,¹⁸ several modifications of the technique have been implemented. Simple laparoscopy achieving a sensitivity of 89.2%, specificity of 95.8% and accuracy of 89.4% in the evaluation of the possibility of peritoneal metastases.¹⁹ The advent of new technology in video laparoscopy, brought about an improvement of the yield of staging laparoscopy, with sensitivity, specificity and accuracy standing at 88.9%, 100% and 95.7% respectively.²⁰ Laparoscopic ultrasound has also been suggested as a

means of improvement of accuracy,^{6,21} but studies show that it may only increase the technique's yield in the evaluation of either lymph nodes or local tumour extension, but not in the detection of peritoneal implantations.¹⁴ The use of fluoresce with 5-aminolevulinic acid (5-ALA) has also been suggested, with promising results,²² yet the samples are still small.⁶ The tumour detection rate using 5-ALA photodynamic diagnosis has been reported to be significantly higher compared with white light,²² but the procedure necessitates sophisticated state-of-the art equipment, like D-LIGHT System, currently not routinely available in clinical practice.⁹

Based on the findings of current literature,²³⁻²⁸ positive cytology is regarded a reliable biomarker that should be taken into consideration in patients with gastric cancer, as they are potential candidates for the administration of either peri-operative or neoadjuvant chemotherapy.²³ According to large studies, approximately 4-11% of patients are expected to have a positive cytology.^{29,30} Based on the prognostic role of a positive cytology, its evaluation has been endorsed by both the NCCN guidelines, as well as the AJCC staging system for gastric cancer patients.^{31,32} However, there is no consensus in the treatment strategy in patients with positive cytology as the only indication of M1 disease stage.³³ In patients with positive cytology, the reported median survival times after gastrectomy has been reported to be 10.5-14.8 months,^{23,24} while this figure changed to 43.2 months in cases where perioperative neoadjuvant chemotherapy was administered,³⁵ and adjuvant chemotherapy achieved a median survival time of 23.5 months.³⁶ Intraperitoneal and systemic paclitaxel combined with S-1systemic in patients with positive cytology, constitutes another promising approach under investigation.^{37,38} Since Asian meta-analyses of adjuvant Hyperthermic Intraperitoneal Chemotherapy (HIPEC) after surgery for resectable high-risk gastric cancer (compared with resection only) have shown increased survival rates and decreased incidence of peritoneal recurrence,^{39,40} a European

study, -comprising patients with locally advanced gastric cancer, including those with positive cytology as demonstrated after the application of laparoscopy (GASTRCHIP study)-, designed to assess the benefit of adjuvant HIPEC in Western population, is ongoing.⁴¹ Consequently, patients with positive cytology, meeting the criteria for M1 disease (Stage IV), should not undergo up-front gastric resection as a primary therapeutic intervention.²³ However, patients with excellent performance status, who are converted to cytology negative, are considered the best candidates for gastric resection.²³ Since approximately 7-16% of patients with locally advanced gastric cancer with initially negative cytology who receive neoadjuvant chemotherapy, have been shown to develop positive cytology disease, repeat of diagnostic cytology before curative resection has been suggested.^{42,43}

Palliative systemic chemotherapy remains the mainstay of treatment in patients with gross peritoneal disease detected during laparoscopy.²³ However, the survival of this patient category remains poor, mainly due to the ineffectiveness of systemic chemotherapy, attributed to its inadequate diffusion into the peritoneal cavity.⁴⁴ The role of cytoreductive surgery (CRS) and HIPEC in such cases remains controversial,^{45,46} with an overall median survival of 9.2 months and a 5-year survival rate of 13% reported in a study comprising 150 patients from 15 Western centres.⁴⁷ However, a randomized control trial, allocating 68 Chinese patients to CRS, with or without HIPEC -using mitomycin C and cisplatin-,⁴⁸ revealed a statistically significant improvement in overall survival duration. Recently, the comprehensive treatment for peritoneal disease in patients with gastric cancer was suggested,⁴⁹ with promising results. Its main features are the initial determination of the peritoneal cancer index by means of laparoscopy, the administration of preoperative chemotherapy, including laparoscopic hyperthermic intraperitoneal chemotherapy (LHIPEC), neoadjuvant intraperitoneal/systemic chemotherapy, HIPEC, intraoperative peritoneal lavage, CRS, as well as


early and late postoperative systemic chemotherapy.⁴⁹

Staging laparoscopy has undergone criticism for 3 major issues. Firstly, it represents an invasive procedure, requiring general anaesthesia and pneumoperitoneum,^{6,9} increasing anaesthesia time and potential related risks.^{13,50} Operation-related complications though are rare, reaching up to 4.2%,^{13,20,51,52} occurring at a lower rate compared with exploratory laparotomy,¹⁰ while the in-hospital mortality in patients who underwent staging laparoscopy was significantly lower compared with that of those who underwent an exploratory laparotomy (5.3% vs. 13.1%, $P < 0.05$).⁵⁰ Another concern is related to its hospital cost, as it entails the use of sophisticated equipment and materials.^{6,9} The technique's cost though, is compensated by the significantly longer hospitalization of patients undergoing laparotomy, relative to that of patients undergoing exploratory laparoscopy (10 days vs. 2 days, $P < 0.05$),⁵⁰ as well as the delay in the initiation of palliative chemotherapy, owing to an unnecessary laparotomy.⁶ The possibility of implantation of tumour cells at puncture sites of the trocars, owing to tumour dissemination caused by the induced pneumoperitoneum, constitutes the third issue to be taken into consideration.⁶ However, several studies have put this theory into question, since it has been reported that the incidence of metastatic dissemination at trocar sites, does not differ significantly from that described in cases of local tumour recurrence at the site of the incision, in cases of laparotomy performed for treatment of gastrointestinal tumors.⁵³ These findings reveal that tumour implantation, either at trocar sites or at the laparotomy incision, should be attributed to the biological behaviour of the tumour cells, rather than to the pneumoperitoneum or the surgical handling.⁶

Consequently, it is widely accepted that only a subgroup of patients with gastric cancer benefit from staging laparoscopy and cytology.^{6,23} No indication is evident in patients with bleeding, perforation, or stenosis, since they will require

some type of intervention.^{6,23} The same applies for patients with early stage disease, who have a high probability of a curative surgical operation.^{6,23} Therefore, staging laparoscopy should be reserved for patients with locally advanced disease (T3 and T4 tumours), most commonly associated with peritoneal disease.¹³ While peritoneal metastases in stage II disease are detected with a probability of 50% using classic imaging techniques, in stage III disease, peritoneal metastases might be missed in 57-98% of cases.⁵⁵ As previously reported, CA-125, tumour size > 4 cm, Borrmann type III/IV, invasion of serosa, and lymph node metastases, have been positively and significantly correlated with peritoneal metastases and/or positive cytology,^{20,55,56} suggesting risk factors,⁹ and staging laparoscopy is indicated, especially in those patients with 2 or 3 of these risk factors.⁹ An additional benefit for patients with locally advanced tumours suspicious of invading adjacent structures, or for those in whom lymph nodes are found too close or adherent to the celiac trunk by CT, is the assessment of regional tumour extension and examination of the area of the celiac trunk respectively.^{6,9} Both of these situations would necessitate neoadjuvant treatment administration to increase R0 resection rate.^{6,9} Likewise, patients with a proven early gastric cancer using endoscopic ultrasound (T1, T2, N0), can abstain from cytology evaluation, since its yield is extremely low in the above patient subcategory (about 4%), while it is approximately 25% in high risk patients (T3/T4, N+).²⁹ Based on the available data, the proposed algorithm for the management of patients with locally advanced gastric cancer is depicted in figure 1, although further studies are required to establish the standard of care for patients with positive cytology.

In conclusion, laparoscopy for staging of gastric cancer, with the concurrent utilization of peritoneal fluid cytology, represents a useful and accurate method for the detection of occult peritoneal metastatic disease. It seems that it can improve treatment decision-making in patients with locally advanced gastric cancer, and decrease the rate of

Figure 1. Proposed algorithm of management for patients with locally advanced gastric cancer. CRS: Cytoreductive Surgery, HIPEC: Hyperthermic Intraperitoneal Chemotherapy.

unnecessary exploratory laparotomies. However more studies are required to provide and determine the best treatment option for patients with positive cytology as the only evidence of M1 disease.

REFERENCES

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. *CA Cancer J Clin* 2011; 61: 69-90.
2. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, meth-

ods and major patterns in GLOBOCAN 2012. *Int J Cancer* 2015; 136: E359-E386.

3. <http://www.inca.gov.br/estimativa/2014/>. Accessed September 2, 2016
4. Koizumi W, Narahara H, Hara T, et al. S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial.): a phase III trial. *Lancet Oncol* 2008; 9: 215-221.
5. Miki Y, Tokunaga M, Tanizawa Y, Bando E, Kawamura T, Terashima M. Staging Laparoscopy for Patients with cM0, Type 4, and Type 3 Gastric Cancer. *World J Surg* 2015; 39: 2742-2747.
6. Ramos RF, Scalon FM, Scalon MM, Dias DI. Staging laparoscopy in gastric cancer to detect peritoneal metastases: A systematic review and meta-analysis. *Eur J Surg Oncol* 2016; 42: 1315-21.
7. Seeveratnam R, Cardoso R, McGregor C, et al. How useful is preoperative imaging for tumor, node, metastasis (TNM) staging of gastric cancer? A meta-analysis. *Gastric Cancer* 2012; 15 (Suppl. 1): S3-S18.
8. Pinheiro Filho JC, Cohen R, Garcia MJ. Role of laparoscopy for gastric cancer staging. *Rev Bras Videocir* 2005; 3: 97-101.
9. Hu YF, Deng ZW, Liu H, et al. Staging laparoscopy improves treatment decision-making for advanced gastric cancer. *World J Gastroenterol* 2016; 22: 1859-1868.
10. D'Ugo DM, Pende V, Persiani R, Rausei S, Picciocchi A. Laparoscopic staging of gastric cancer: an overview. *J Am Coll Surg* 2003; 196: 965-974.
11. Huang B, Sun Z, Wang Z, Lu C, Xing C, Zhao B, Xu H. Factors associated with peritoneal metastasis in non-serosa-invasive gastric cancer: a retrospective study of a prospectively-collected database. *BMC Cancer* 2013; 13: 57.
12. Burbidge S, Mahady K, Naik K. The role of CT and staging laparoscopy in the staging of gastric cancer. *Clin Radiol* 2013; 68: 251-255.
13. Song KY, Kim JJ, Kim SN, Park CH. Staging laparoscopy for advanced gastric cancer: is it also useful for the group which has an aggressive surgical strategy? *World J Surg* 2007; 31: 1228-1233.
14. Lavonius MI, Gullichsen R, Salo S, et al. Staging of gastric cancer: a study with spiral computed tomography, ultrasonography, laparoscopy, and laparoscopic ultrasonography. *Surg Laparosc Endosc Percutan Tech* 2002; 12: 77-81.
15. Stell DA, Carter CR, Stewart I, et al. Prospective comparison of laparoscopy, ultrasonography and computed tomography in the staging of gastric cancer. *Br J Surg* 1996; 83: 1260-1262.
16. Burke EC, Karpeh MS, Conlon KC, et al. Laparoscopy in the management of gastric adenocarcinoma. *Ann Surg* 1997; 225: 262-267.
17. Leake PA, Cardoso R, Seeveratnam R, et al. A systematic review of the accuracy and indications for diagnostic laparoscopy prior to curative-intent resection of gastric cancer. *Gastric Cancer* 2012; 15 (Suppl. 1): S38-S47.
18. Gross E, Bancewicz J, Ingram G. Assessment of gastric cancer by laparoscopy. *Br Med J (Clin Res Ed)* 1984; 288: 1577.
19. Possik RA, Franco EL, Pires DR, Wohnrath DR, Ferreira EB. Sensitivity, specificity, and predictive value of laparoscopy for the staging of gastric cancer and for the detection of liver metastases. *Cancer* 1986; 58: 1-6.
20. Tsuchida K, Yoshikawa T, Tsuburaya A, Cho H, Kobayashi O. Indications for staging laparoscopy in clinical T4M0 gastric cancer. *World J Surg* 2011; 35: 2703-2709.
21. Mortensen MB. Pretherapeutic evaluation of patients with upper gastrointestinal tract cancer using endoscopic and laparoscopic ultrasonography. *Dan Med J* 2012; 59: B4568.
22. Kishi K, Fujiwara Y, Yano M, et al. Staging laparoscopy using ALA-mediated photodynamic diagnosis improves the detection of peritoneal metastases in advanced gastric cancer. *J Surg Oncol* 2012; 106: 294-298.
23. De Andrade JP, Mezhir JJ. The critical role of peritoneal cytology in the staging of gastric cancer: an evidence-based review. *J Surg Oncol* 2014; 110: 291-297.
24. Bentrem D, Wilton A, Mazumdar M, et al. The value of peritoneal washing cytology as a preoperative predictor in patients with gastric carcinoma undergoing a curative resection. *Ann Surg Oncol* 2005; 12: 347-353.
25. Kodera Y, Yamamura Y, Shimizu Y, et al. Peritoneal washing cytology: Prognostic value of positive findings in patients with gastric carcinoma undergoing a potentially curative resection. *J Surg Oncol* 1999; 72: 60-64.
26. Ribeiro U Jr, Safatle-Ribeiro AV, Zilberstein B, et al. Does the intraoperative peritoneal lavage cytology add prognostic information in patients with potentially curative gastric resection? *J Gastrointest Surg* 2006; 10: 170-176.

27. Bonenkamp JJ, Songun I, Hermans J, et al. Prognostic value of positive cytology findings from abdominal washings in patients with gastric cancer. *Br J Surg* 1996; 83: 672-674.
28. Bando E, Yonemura Y, Takeshita Y, et al. Intraoperative lavage for cytological examination in 1,297 patients with gastric carcinoma. *Am J Surg* 1999; 178: 256-262.
29. Power DG, Schattner MA, Gerdes H, et al. Endoscopic ultrasound can improve the selection for laparoscopy in patients with localized gastric cancer. *J Am Coll Surg* 2009; 208: 173-178.
30. Mezhir JJ, Posner MC, Roggin KK. Prospective clinical trial of diagnostic peritoneal lavage to detect positive peritoneal cytology in patients with gastric cancer. *J Surg Oncol* 2013; 107: 794-798.
31. Ajani A, Bentrem D, Besh S, et al. NCCN Clinical Practice Guidelines in Oncology: Gastric Cancer. 2013; Version 2.2013: www.nccn.org
32. Edge S: Cancer AJCo: AJCC cancer staging manual. New York: Springer; 2010.
33. Brar SS, Mahar AL, Helyer LK, et al. Processes of care in the multidisciplinary treatment of gastric cancer: Results of a RAND/UCLA expert panel. *JAMA Surg* 2014; 149: 18-25.
34. Cabalag CS, Chan ST, Kaneko Y, et al. A systematic review and meta-analysis of gastric cancer treatment in patients with positive peritoneal cytology. *Gastric Cancer* 2015; 18: 11-22.
35. Okabe H, Ueda S, Obama K, et al. Induction chemotherapy with S-1 plus cisplatin followed by surgery for treatment of gastric cancer with peritoneal dissemination. *Ann Surg Oncol* 2009; 16: 3227-3236.
36. Kodera Y, Ito S, Mochizuki Y, et al. A phase II study of radical surgery followed by postoperative chemotherapy with S-1 for gastric carcinoma with free cancer cells in the peritoneal cavity (CCOGO301 study). *Eur J Surg Oncol* 2009; 35: 1158-1163.
37. Ishigami H, Kitayama J, Kaisaki S, et al. Phase II study of weekly intravenous and intraperitoneal paclitaxel combined with S-1 for advanced gastric cancer with peritoneal metastasis. *Ann Oncol* 2010; 21: 67-70.
38. Ishigami H, Kitayama J, Otani K, et al. Phase I pharmacokinetic study of weekly intravenous and intraperitoneal paclitaxel combined with S-1 for advanced gastric cancer. *Oncology* 2009; 76: 311-314.
39. Sun J, Song Y, Wang Z, et al. Benefits of hyperthermic intraperitoneal chemotherapy for patients with serosal invasion in gastric cancer: a meta-analysis of the randomized controlled trials. *BMC Cancer* 2012; 12: 526.
40. Mi DH, Li Z, Yang KH, et al. Surgery combined with intraoperative hyperthermic intraperitoneal chemotherapy (IHIC) for gastric cancer: a systematic review and meta-analysis of randomized control trials. *Int J Hyperthermia* 2013; 29: 156-167.
41. Glehen O, Passot G, Villeneuve L, et al. GASTRICHIP: D2 resection and hyperthermic intraperitoneal chemotherapy in locally advanced gastric carcinoma: a randomized and multicenter phase III study. *BMC Cancer* 2014; 14: 183.
42. Lorenzen S, Panram B, Rosenberg R, et al. Prognostic significance of free peritoneal tumor cells in the peritoneal cavity before and after neoadjuvant chemotherapy in patients with gastric carcinoma undergoing potentially curative resection. *Ann Surg Oncol* 2010; 17: 2733-2739.
43. Cardona K, Zhou Q, Gonan M, et al. Role of repeat staging laparoscopy in locoregionally advanced gastric or gastroesophageal cancer after neoadjuvant therapy. *Ann Surg Oncol* 2013; 20: 548-554.
44. Cocolinli F, Cotte E, Glehen O, et al. Intraperitoneal chemotherapy in advanced gastric cancer. Meta-analysis of randomized trials. *EJSO* 2014; 40: 12-26.
45. Spiliotis J, Halkia E, de Bree E. Treatment of peritoneal surface malignancies with hyperthermic intraperitoneal chemotherapy-current perspectives. *Curr Oncol* 2016; 23: e266-e275.
46. de Bree E, Michelakis D. The role of intraperitoneal chemotherapy in gastric cancer. *Hell Surg Oncol* 2016; 7: 78-86.
47. Glehen O, Gilly FN, Arvieux C, et al. on behalf of the Association Française de Chirurgie. Peritoneal carcinomatosis from gastric cancer: a multi-institutional study of 159 patients treated by cytoreductive surgery combined with perioperative intraperitoneal chemotherapy. *Ann Surg Oncol* 2010; 17: 2370-2377.
48. Yang XJ, Huang CQ, Suo T, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy improves survival of patients with peritoneal carcinomatosis from gastric cancer: final results of a phase III randomized clinical trial. *Ann Surg Oncol* 2011; 18: 1575-1581.
49. Yonemura Y, Canbay E, Li Y, et al. A comprehensive treatment for peritoneal metastases from gastric cancer with curative intent. *EJSO* 2016; 42: 1123-1131.
50. Karanicolas PJ, Elkin EB, Jacks LM, et al. Staging laparoscopy in the management of gastric cancer:

a population-based analysis. *J Am Coll Surg* 2011; 213: 644-651.

51. Blackshaw GR, Barry JD, Edwards P, Allison MC, Thomas GV, Lewis WG. Laparoscopy significantly improves the perceived preoperative stage of gastric cancer. *Gastric Cancer* 2003; 6:225-229.

52. Muntean V, Mihailov A, Iancu C, Toganel R, Fabian O, Domsa I, Muntean MV. Staging laparoscopy in gastric cancer. Accuracy and impact on therapy. *J Gastrointestin Liver Dis* 2009; 18: 189-195.

53. Pearlstone DB, Feig BW, Mansfield PF. Port site recurrences after laparoscopy for malignant disease. *Semin Surg Oncol* 1999; 16: 307-312.

54. Asencio F, Aguiló J, Salvador JL, et al. Video-laparoscopic staging of gastric cancer. A prospective multicenter comparison with noninvasive techniques. *Surg Endosc* 1997; 11: 1153-1158.

55. Hur H, Lee HH, Jung H, Song KY, Jeon HM, Park CH. Predicting factors of unexpected peritoneal seeding in locally advanced gastric cancer: indications for staging laparoscopy. *J Surg Oncol* 2010; 102: 753-757.

56. Fujimura T, Kinami S, Ninomiya I, et al. Diagnostic laparoscopy, serum CA125, and peritoneal metastasis in gastric cancer. *Endoscopy* 2002; 34: 569-574.

Treatment of acute malignant colorectal obstruction: diverting colostomy as a bridge for elective surgery is a safe and valid alternative

E. de Bree,¹ D. Stamatiou,¹ D. Michelakis,¹ M. Christodoulakis²

¹*Department of Surgical Oncology, Medical School of Crete University Hospital, Heraklion, Greece*

²*Department of Surgery, Venizeleion - Pananeio Hospital, Heraklion, Greece*

ABSTRACT

Acute bowel obstruction by colon cancer occurs relatively frequently and requires immediate intervention. The optimal curative approach for obstructing colorectal carcinoma remains a topic of discussion. Primary resection with anastomosis is associated with an increased risk of anastomotic leakage, while primary resection with an intentionally temporary colostomy may lead to a difficult second procedure or an increased risk of permanent colostomy. Further, the patient may be in a poor condition to undergo primary resection. Primary decompression of the bowel with a colostomy or stent and delayed colectomy has the advantage of providing time for improvement of the patient's condition, recovery of the initially dilated large bowel, accurate disease staging and planning of eventual preoperative therapy. Further, in the absence of dilated bowel the surgical procedure may be performed laparoscopically. Since placement of a self-expanding metallic stent as a bridge to elective surgery is associated with a high complication rate and probably with impaired oncological outcome, it should be only considered as an alternative to emergency surgery in those who have an increased surgical risk or as a palliative procedure. Creation of diverting colostomy as a bridge to elective surgery is a safe and valid alternative. Although a second operation is required, the total morbidity and mortality are not higher than for primary resection, while the rate of a permanent colostomy is significantly lower. Moreover, there are indications that this approach is associated with better oncological outcome.

KEY WORDS: colorectal cancer, bowel obstruction, primary resection, diverting colostomy, self-expanding metallic stent

INTRODUCTION

Approximately 20% of the patients with colorectal cancer present with acute bowel obstruction.^{1,2} Individuals with obstructed carcinoma of the colon have a higher operative mortality

and morbidity and a shorter long-term survival. The higher operative mortality and morbidity

Correspondence address:

Eelco de Bree, MD, Department of Surgical Oncology, University Hospital, P.O. Box 1352, 71110 Heraklion, Greece
Tel.: +30-2810-392056 / 392382, Fax: +30-2810-392382, e-mail: debree@edu.uoc.gr

may depend entirely on the choice of operative procedures.³ The optimal treatment for those patients has been a topic of controversy. Ideally, the curative treatment of patients with colorectal cancer with acute obstruction would be the same as that of colorectal cancer patients who do not require emergency surgery. However, this standard treatment might not be feasible in those patients due to several risk factors.⁴ Most of the patients have a poor general health status, an impaired nutritional status and an advanced disease status, whereas these conditions and the dilated wall of the proximal bowel render the anastomosis prone to leakage. All these parameters are associated with increased morbidity and mortality. On the other hand, an immediate solution for the bowel obstruction is required. Therefore, staged procedures may be indicated, in which case the primary operation is shorter, less extensive and more tolerable by the deteriorated patients and high-risk anastomosis can be avoided, instead of primary resection. Disadvantage of such an approach is that the subsequent intended resection of the tumour requires a second surgical procedure and the cumulative morbidity and mortality of both surgical procedures may be higher than that of primary resection and anastomosis. Another issue is that, when the bowel resection is postponed, the tumour remains in place and oncological treatment is delayed.

While for curative uncomplicated right colon cancer (i.e. located proximal to the splenic flexure) primary colectomy and ileocolic anastomosis is the standard of care, in the case of acute obstruction, alternative surgical procedures include: 1) colectomy with enterostomy with secondary anastomosis, 2) decompression enterostomy and secondary colectomy with anastomosis when the deteriorated condition of the patient and his bowel are improved and 3) bypass bowel anastomosis. In case of left bowel obstruction (i.e. located distal to the splenic flexure) in curative colon cancer, alternative approaches for primary left colectomy and colocolonic or colorectal anastomosis are:

1) colectomy with colostomy and secondary colocolonic or colorectal anastomosis (i.e. Hartmann procedure), 2) colostomy and secondary bowel resection with anastomosis, 3) subtotal colectomy with ileocolonic or ileorectal anastomosis, avoiding anastomosis with dilated proximal colon but causing increased diarrhoeic bowel movements and 4) initial management of the obstruction by endoscopic placement of an expanding stent as a bridge to surgery. In the case of acute obstruction by a rectal carcinoma a diverting colostomy may be initially required instead of a low anterior rectosigmoid resection or an abdominoperineal resection.

The decision on which procedure is best to be performed in a certain case may be difficult and is mostly based on the surgeon's individual opinion and preference. The aim of this review is to seek for scientific evidence in the literature regarding the optimal treatment in the case of acute bowel obstruction in colorectal cancer patients.

PRIMARY RESECTION AND ANASTOMOSIS

In a retrospective series of 243 emergency operative procedures for obstructing lesions in colorectal cancer patients,⁵ the primary resection rate was 92%. Totally, 81% of the patients underwent primary resection and concurrent bowel anastomosis, in 90% of the patients with right-sided colon cancer and in 74% of the patients with an obstructing tumour of the left colon. Among the 101 primary anastomoses in patients with left-sided obstruction, segmental resection with on-table lavage was performed in 75 patients and subtotal colectomy was performed in 26. The overall operative mortality rate was 9.4%, while that of the patients with primary resection and anastomosis was 8.1%. The anastomotic leakage rate for those with primary resection and anastomosis was 6.1%. There were no differences in the mortality or leakage rates between patients with right-sided and left-sided lesions (mortality:

7.3% versus 8.9%, $p=0.79$; leakage: 5.2% versus 6.9%, $p=0.77$). Colocolonic anastomosis did not show a significant difference in leakage rate when compared with ileocolonic anastomosis (6.1% versus 6.0%, $p=1.0$). From these retrospective data it appears that after proper patient selection for both left-sided and right-sided obstruction primary resection and anastomosis is not associated with increased mortality, whereas the leakage rate is acceptable. The authors conclude that the single-stage procedure should be the objective for the treatment of patients with obstructing colorectal cancers, except when patients are haemodynamically unstable during surgery or when the condition of the bowel is not optimal for primary anastomosis.

COLOSTOMY OR STENT AS BRIDGE TO ELECTIVE SURGERY

However, in patients with acute malignant bowel obstruction who are in bad general condition or have a dilated proximal bowel, a decompression of the bowel by a diverting colostomy or a stent may serve as a bridge to elective surgery. These procedures are mainly indicated for left sided colonic (i.e. distal to the splenic flexure) or rectal obstruction, since primary right colectomy with anastomosis of the ileum with non-dilated colon is so not prone to anastomotic leakage. In case of synchronous metastatic disease, creating a diverting stoma or placing a self-expandable metallic stent, may be the definite palliative surgical treatment before starting systemic chemotherapy. The systemic chemotherapy may help to select patients for bowel resection and metastasectomy.

In case of potentially curative disease, the advantages of performing a colostomy or placing a self-expandable metallic stent is the immediate solution for the bowel obstruction and providing in this way time for improvement of the patient's condition, recovery of the initially dilated large bowel, accurate disease staging and, especially in case of rectal cancer, planning of eventual pre-

operative therapy. Further, in absence of dilated bowel the surgical procedure may be performed laparoscopically. Finally, having a better optical surgical field without dilated bowel and the patient's condition allowing for a longer duration of the operation, the procedure may possibly be performed in an oncologically more accurate way. Disadvantages of this staged procedure are the need for a second intervention and the possibility of a higher accumulative morbidity.

Placement of a stent as a bridge to elective surgery versus primary colectomy

The use of a self-expandable metallic stent as a bridge to surgery when compared with emergency colectomy for acute obstruction of the left colon or the rectum appeared to be safe and resulted in improved short-term outcome in recent meta-analyses.^{6,7} The colonic stent group achieved significantly more favourable rates of permanent stoma, primary anastomosis, wound infection, and overall complications, while there was no significant difference between the two groups in anastomotic leakage, mortality, or intra-abdominal infection. However, two recent multicenter randomized trials were prematurely closed due to high complication rates, especially technical failure and bowel perforations, requiring emergency surgical intervention.^{8,9} Stent-related bowel perforations are more frequently seen in total obstruction and a length of stricture longer than 4 cm.¹⁰⁻¹² Moreover, there is concern about impaired oncological outcome after placement of a stent. In one of the recent multicenter trials, the recurrence rate was higher in the stent group (4-year disease-free survival 30% vs. 49%), especially in the subgroup with guidewire- or stent-related bowel perforation (4-year disease-free survival 0%, $p=0.007$).¹³ Further, a French retrospective comparative study, using a propensity score analysis to correct for selection bias, reported significant lower survival rates for stenting when compared with emergency surgical intervention (21% vs. 48%, respectively ($P=0.02$)).¹⁴ In a Danish nation-

wide cohort study,¹⁵ a trend for an increase of the 5-year recurrence risk was observed after stenting instead of emergency surgery for acute left-sided colon obstruction (49% vs. 40%, hazard ratio 1.12, 95% confidence interval 0.99-1.28). In another comparative study,¹⁶ a significant higher local recurrence rate was observed after stenting (32% vs. 8%, p=0.038), without however a significant difference in overall survival. This potentially negative impact on oncological outcome may be explained by spread of cancer cells by tumour manipulation, bowel dilatation and bowel or tumour perforation during its placement as well as ulceration of the tumour and the peritumoral tissues by the stent.^{9,16}

Based on the available evidence, the European Society of Gastrointestinal Endoscopy provided clinical guidelines for the use of self-expandable metallic stents for obstructing colorectal cancer,^{10,17} wherein its use “as a bridge to elective surgery is not recommended as a standard treatment of symptomatic left-sided malignant colonic obstruction (strong recommendation, high quality evidence)”. According of these guidelines, “for patients with potentially curable obstructing left-sided colon cancer, stent placement as a bridge to elective surgery may be considered as an alternative to emergency surgery in those who have an increased surgical risk, i.e. age above 70 years and/or ASA class \geq III (weak recommendation, low quality evidence)”. Further, stent placement is recommended as the palliative treatment for patients with malignant colonic obstruction, unless the patient is simultaneously being treated with angiogenesis inhibitors (e.g. bevacizumab) as they increase the risk of stent perforation.

Regarding stent placement for acute malignant obstruction of the right colon available data are sparser. In a recent meta-analysis of cohort studies,¹⁸ primary resection in 2873 patients seemed to be associated with higher mortality and major morbidity rates than stent placement and elective resection in 155 patients (11% vs. 0%, p=0.009 and 24% vs. 1%, p=0.049, respectively). In addition,

stent placement resulted in fewer anastomotic leakages and permanent ileostomies. However, as no high-level studies are available on the optimal treatment of right-sided colon obstruction and proximal stenting is considered technically challenging, future comparative studies are warranted for the development of an evidence-based clinical decision guideline.

Diverting colostomy and delayed colectomy versus primary colectomy

Another choice for postponing definite resection of the large bowel obstruction and providing the opportunity for elective surgery is the creation of a diverting colostomy, or much less frequent, an ileostomy. Unfortunately, the data available to support either approach are relatively sparse. In most studies, the number of included patients is limited, while only one randomized trial is available. In a meta-analysis of eight comparative studies (among which one randomized trial),¹⁹ including 2424 patients with acute malignant left-sided colonic obstruction, the morbidity and mortality rates were not significantly different. However, for patients with initially constructed colostomy, the proportion of creation of a primary anastomosis at the time of resection of the obstructed bowel was significantly higher (51% vs. 11%, p<0.00001) and the risk of permanent colostomy significantly lower (22% vs. 6%, p<0.001) than for patients who underwent emergency colectomy. Only in two studies the anastomotic leakage rate was reported. In one study there was no significant difference in anastomotic leakage,²⁰ whereas in the second study anastomotic leakage was observed more frequently after primary resection.²¹ While in the older studies the cumulative hospital stay was higher in the group of patients undergoing colostomy and secondary resection of left-sided obstructive colon cancer, in a recent large prospective Dutch national registry the total hospital stay was shorter for the colostomy and delayed resection group when compared with the emergency colectomy group (12 versus 16 days).²²

This may be attributed to the increasing use of the laparoscopic approach in elective surgery for colon cancer, which is usually not feasible in the emergency setting due to dilated bowel.

It is of major importance to choose the site of the emergency diverting colostomy correctly, especially in rectal cancer. In a recent study,²³ it appeared that approximately one third of the diverting colostomies were considered to be placed inappropriately in patients with rectal cancer. In case of a low anterior resection as definite treatment, a right-sided diverting transverse double loop colostomy is indicated, while for a subsequent abdomino-perineal resection, an end sigmoid colostomy is advocated. Stoma placement on the left upper abdomen should be avoided since it could compromise the descending colon in case of a low anterior resection and anastomosis.

The data for right-sided obstructive colon cancer are even sparser. In an analysis of patients with acute obstruction of proximal colon cancer registered in the Dutch Surgical Colorectal Audit,²⁴ 95% of the 1860 patients underwent acute resection, while the remaining patients were treated by initial decompression with stoma construction or stent placement followed by secondary resection. Because a significantly lower postoperative mortality rate was seen in the group of patients initially treated with a stent or stoma (8.8% vs. 2.4%, $p=0.04$), also in case of acute malignant obstruction of the right colon, a bridging strategy may be a valid alternative.

From the above data it seems that diverting colostomy as a bridge to surgery is a safe and valid alternative for primary resection, but what are the data regarding oncological outcome? Again there are not many studies on this issue available. In the only randomized trial,²⁵ 36 patients underwent diverting colostomy and delayed resection of the tumour, while 50 patients underwent immediate colon resection for acute obstruction of left-sided colon cancer from 1978 to 1993. Local and overall recurrence rates were similar, but the median disease-free duration was significantly higher in the

group with staged resection (18 versus 12 months, $p=0.02$). In two retrospective comparative studies,^{2,26} there was no difference in survival, while in two other studies^{27,28} survival was better after primary emergency resection than after diverting colostomy and delayed resection for obstructive colorectal cancer. However, in a recent comparative study,²¹ the survival tended to be longer in patients with diverting colostomy and delayed resection of obstructing left-sided colon cancer (median survival 105 vs. 66 months, $p=0.088$). In this study, although delayed resection was more frequently performed in obstructing rectal cancer (28% vs. 11%, $p=0.021$), the local recurrence rate tended to be higher in the group of patients with primary resection for their obstructing colorectal cancer (10.2% vs. 5.6%, $p=0.326$). Most importantly, the number of lymph nodes harvested were significantly higher after diverting colostomy and delayed resection than after primary resection in patients with obstructing rectal carcinoma (14.6 vs. 7.2, $p=0.002$), while there was no difference in case of more proximal left-sided colon cancer. One may speculate that the extent of tumour excision and lymph node dissection would have been limited in the face of dilated bowel filled with a large amount of faecal material, with delayed resection facilitating meticulous dissection which is most important in rectal cancer surgery. Difference in survival might be the result of the invasive potential of tumour cells, which might be enhanced by the oedematous conditions of the bowel and more manipulation of the tumour by the surgeons. Both instances may facilitate spreading the tumour cells into the lymphatic vessels and vasculature to cause recurrence. In case of locally advanced rectal cancer, diverting colostomy may give patients the chance to undergo neoadjuvant chemoradiotherapy before tumour resection.

CONCLUSIONS

As potentially curative treatment for acute obstruction of colon carcinoma resection with

primary anastomosis is usually safe, except when the patient or the proximal colon is in poor condition. Primary colectomy with an intentionally performed temporary colostomy (Hartmann procedure) is an alternative in the latter patients, but the subsequent operation to restore the bowel continuity may be difficult and often the patients remain with a permanent colostomy. Primary decompression of the bowel with a colostomy or stent and delayed colectomy has the advantage of providing time for improvement of the patient's condition, recovery of the initially dilated large bowel, accurate disease staging and planning of eventual preoperative therapy. Further, in absence of dilated bowel the surgical procedure may be performed laparoscopically. Finally, having a better optical surgical field without dilated bowel and the patient's condition allowing for a longer duration of the operation, the procedure may possibly be performed in an oncologically more accurate way. Since stent placement as a bridge to elective surgery is associated with a high complication rate and probably with impaired oncological outcome, it should be only considered as an alternative to emergency surgery in those who have an increased surgical risk, i.e. age above 70 years and/or ASA class \geq III, or as a palliative procedure. Creation of diverting colostomy as a bridge to elective surgery is a safe and valid alternative. Although a second operation is required, the total morbidity and mortality are not higher than for primary resection, while the rate of permanent colostomy is significantly lower. Moreover, there are indications that this staged approach is associated with better oncological outcome.

REFERENCES

1. Ansaldi L, Andersson RE, Bazzoli F, et al. Guidelines in the management of obstructing cancer of the left colon: consensus conference of the world society of emergency surgery (WSES) and peritoneum and surgery (PnS) society. *World J Emerg Surg* 2010; 5: 29.
2. Phillips RK, Hittinger R, Fry JS, Fielding LP. Malignant large bowel obstruction. *Br J Surg* 1985; 72: 296-302.
3. Fitchett CW, Hoffman GC. Obstructing malignant lesions of the colon. *Surg Clin North Am* 1986; 66: 807-820.
4. Scott NA, Jeacock J, Kingston RD. Risk factors in patients presenting as an emergency with colorectal cancer *Br J Surg* 1995; 82: 321-323.
5. Lee YM, Law WL, Chu KW, Poon RT. Emergency surgery for obstructing colorectal cancers: a comparison between right-sided and left-sided lesions. *J Am Coll Surg* 2001; 192: 719-725.
6. Huang X, Lv B, Zhang S, Meng L. Preoperative colonic stents versus emergency surgery for acute left-sided malignant colonic obstruction: a meta-analysis. *J Gastrointest Surg* 2014; 18: 584-591.
7. Cirocchi R, Farinella E, Trastulli S, et al. Safety and efficacy of endoscopic colonic stenting as a bridge to surgery in the management of intestinal obstruction due to left colon and rectal cancer: a systematic review and meta-analysis. *Surg Oncol* 2013; 22: 14-21.
8. Pirlet IA, Slim K, Kwiatkowski F, Michot F, Millat BL. Emergency preoperative stenting versus surgery for acute left-sided malignant colonic obstruction: a multicenter randomized controlled trial. *Surg Endosc* 2011; 25: 1814-1821.
9. van Hooft JE, Bemelman WA, Oldenburg B, et al. Colonic stenting versus emergency surgery for acute left-sided malignant colonic obstruction: a multicentre randomised trial. *Lancet Oncol* 2011; 12: 344-352.
10. van Hooft JE, van Halsema EE, Vanbiervliet G, et al. Self-expandable metal stents for obstructing colonic and extracolonic cancer: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline. *Gastrointest Endosc* 2014; 80: 747-761.e1-75.
11. Boyle DJ, Thorn C, Saini A, et al. Predictive factors for successful colonic stenting in acute large-bowel obstruction: a 15-year cohort analysis. *Dis Colon Rectum* 2015; 58: 358-362.
12. van Halsema EE, van Hooft JE, Small AJ, et al. Perforation in colorectal stenting: a meta-analysis and a search for risk factors. *Gastrointest Endosc* 2014; 79: 970-982.
13. Sloothaak DA, van den Berg MW, Dijkgraaf MG, et al. Oncological outcome of malignant colonic obstruction in the Dutch Stent-In 2 trial. *Br J Surg* 2014; 101: 1751-1757.
14. Sabbagh C, Browet F, Diouf M, et al. Is stenting as "a bridge to surgery" an oncologically safe strategy for the management of acute, left-sided, malignant,

colonic obstruction? A comparative study with a propensity score analysis. *Ann Surg* 2013; 258: 107-115.

15. Erichsen R, Horváth-Puhó E, Jacobsen JB, Nilsson T, Baron JA, Sørensen HT. Long-term mortality and recurrence after colorectal cancer surgery with preoperative stenting: a Danish nationwide cohort study. *Endoscopy* 2015; 47: 517-524.
16. Gorissen KJ, Tuynman JB, Fryer E, et al. Local recurrence after stenting for obstructing left-sided colonic cancer. *Br J Surg* 2013; 100: 1805-1809.
17. van Hooft JE, van Halsema EE, Vanbiervliet G, et al. Self-expandable metal stents for obstructing colonic and extracolonic cancer: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline. *Endoscopy* 2014; 46: 990-1053.
18. Amelung FJ, de Beaufort HW, Siersema PD, Verheijen PM, Consten EC. Emergency resection versus bridge to surgery with stenting in patients with acute right-sided colonic obstruction: a systematic review focusing on mortality and morbidity rates. *Int J Colorectal Dis* 2015; 30: 1147-1155.
19. Amelung FJ, Mulder CL, Verheijen PM, Draaisma WA, Siersema PD, Consten EC. Acute resection versus bridge to surgery with diverting colostomy for patients with acute malignant left sided colonic obstruction: Systematic review and meta-analysis. *Surg Oncol* 2015; 24: 313-321.
20. Tan SG, Nambiar R. Resection and anastomosis of obstructed left colonic cancer: primary or staged? *Aust N Z J Surg* 1995; 65: 728-731.
21. Jiang JK, Lan YT, Lin TC, et al. Primary vs. delayed resection for obstructive left-sided colorectal cancer: impact of surgery on patient outcome. *Dis Colon Rectum* 2008; 51: 306-311.
22. Tanis PJ, Paulino Pereira NR, van Hooft JE, et al. Resection of obstructive left-sided colon cancer at a national level: a prospective analysis of short-term outcomes in 1,816 patients. *Dig Surg* 2015; 32: 317-324.
23. Vermeier TA, Orsini RG, Nieuwenhuijzen GA, Rutten HJ, Daams F. Stoma placement in obstructive rectal cancer prior to neo-adjuvant treatment and definitive surgery: A practical guideline *Eur J Surg Oncol* 2016; 42: 273-280.
24. Amelung FJ, Consten EC, Siersema PD, Tanis PJ. A population-based analysis of three treatment modalities for malignant obstruction of the proximal colon: Acute resection versus stent or stoma as a bridge to surgery. *Ann Surg Oncol* 2016; 23: 3660-3668.
25. Kronborg O. Acute obstruction from tumour in the left colon without spread. A randomized trial of emergency colostomy versus resection. *Int J Colorectal Dis* 1995; 10: 1-5.
26. Sjödahl R, Franzén T, Nyström PO. Primary versus staged resection for acute obstructing colorectal carcinoma. *Br J Surg* 1992; 79: 685-688.
27. Fielding LP, Wells BW. Survival after primary and after staged resection for large bowel obstruction caused by cancer. *Br J Surg* 1974; 61: 16-18.
28. Mochizuki H, Nakamura E, Hase K, Tamakuma S. The advantage of primary resection and anastomosis with intraoperative bowel irrigation for obstructing left-sided colorectal carcinoma *Surg Today* 1993; 23: 771-776.

Individualized treatment for an eccrine porocarcinoma of the scalp using lymphoscintigraphy*

IJ den Toom, R de Bree

Department of Head and Neck Surgical Oncology, UMC Utrecht Cancer Center, University Medical Center Utrecht, The Netherlands

ABSTRACT

This case report describes a patient with an eccrine porocarcinoma of the scalp and shows the implication of lymphoscintigraphy for the extent of lymph node dissection in a non-melanoma skin cancer patient with already known ipsilateral lymph node metastases.

KEY WORDS: eccrine porocarcinoma, non-melanoma skin cancer, lymph node metastasis, lymphoscintigraphy, sentinel node

CASE REPORT

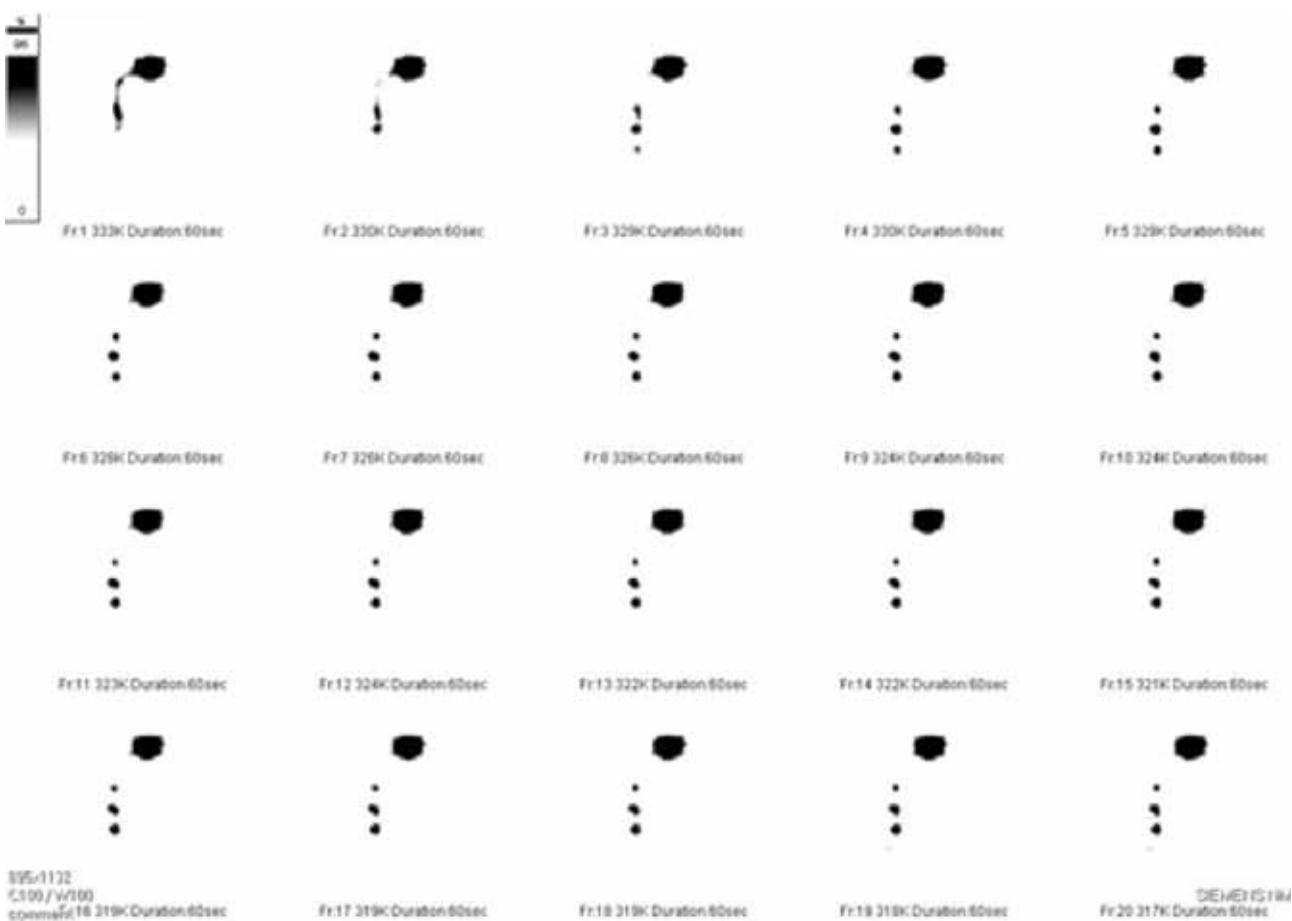
A 46-year-old woman presented with (cytologically proven) lymph node metastases on the right side of the neck (retroauricular, parotid gland and neck) of a previously excised eccrine porocarcinoma of the scalp, located on the paramedian right side of the coronal line.

Two years ago the primary tumour was supposed to be a basal cell carcinoma and was treated with Mohs surgery. There was no clinical evidence of local recurrence at the time of the lymph node metastases. An FDG-PET/CT was performed and showed besides the already known ipsilateral

lymph nodes metastases no evidence for local recurrence, contralateral lymph node metastases or distant metastases.

To identify potential contralateral drainage and detect eventually non-FDG-PET/CT avid micrometastases the sentinel lymph node biopsy procedure was used. In 4 quadrants around the scar of the primary lesion (Figure 1) injections of ^{99m}Tc -labeled nanocolloidal albumin were given. Directly following the injections drainage was visualized by using planar lymphoscintigraphy. A sentinel lymph node (the directly draining lymph node) was identified on

Corresponding author:


R. de Bree, Department of Head and Neck Surgical Oncology, UMC Utrecht Cancer Center, University Medical Center Utrecht, Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands. Electronic address: r.debree@umcutrecht.nl

* This article was previously published in the Nederlands Tijdschrift voor Oncologie (Dutch Journal of Oncology). *Ned Tijdschr Oncol* 2016;13:208-11.

Figure 1. Scar of the former excision of the eccrine porocarcinoma of the scalp, paramedian right at the coronal line.

the right side, but not on the left side of the neck (Figure 2 and 3). It was decided that no left sided lymphatic drainage existed of the original tumour site. Because of the already demonstrated ipsilateral lymph nodes metastases treatment of the right neck was planned instead of only harvesting the sentinel nodes. Therefore a superficial parotidectomy and posterolateral neck dissection was performed on the right side of the neck. The left side remained untreated. Histopathological analysis of the dissection specimen showed 9 lymph nodes containing metastasis of the eccrine porocarcinoma, in 2 of them extra capsular spread was present. Patient received postoperative radiotherapy to the region of the parotid gland and neck on the right side to a total dose of 66 Gray in 33 fractions (regular

Figure 2. Dynamic planar lymphoscintigraphy after injections of ^{99m}Tc -labeled nanocolloidal albumin around the scar of the primary lesion. A sentinel lymph node (cranial hotspot) and 2 second echelon nodes (more caudal hotspots) on the right side could be identified, but no drainage to the contralateral side.

Figure 3. Marks on the skin of the sentinel lymph node and 2 second echelon nodes (purple).

schedule for mucosal head and neck squamous cell carcinoma and melanoma). Until now, currently 8 years after this treatment, no evidence of local or regional disease is present. However, lung metastases were unfortunately diagnosed 4 years after treatment. After a period of watchful waiting she received stereotactic radiotherapy (5 fractions of 11 Gray) due to progression of the 2 lung metastases. During follow-up both lesions remained in regression and no new lesions were observed.

DISCUSSION

Eccrine porocarcinoma

Eccrine porocarcinoma is a rare type of skin cancer arising from sweat glands. Porocarcinoma counts for approximately 17% of all malignant

adnexal tumours and may arise as transformation of long standing benign poroma or *de novo*. Malignant transformation may be associated with spontaneous bleeding, ulceration, itching, pain and abrupt growth. An eccrine poroma is more common and mainly located at the lower extremity, occasionally at the upper extremity (palm of the hand), but rarely at the head and neck region. Eccrine porocarcinoma presents particularly in the middle-aged and elderly population, with no racial predilection and equally in men and woman. Approximately 60% of the eccrine porocarcinomas are situated on the lower extremity. Typical clinical presentation is a solid, asymptomatic erythematous, or purple, nodule smaller than 2 centimeters.¹ Lymph node metastases occur in 20% of the patients.² In literature so far, only 39 cases with eccrine porocarcinoma of head and neck region are reported.³⁻¹⁵

The treatment of choice is a surgical excision. Standard local wide excision but also Mohs microscopic surgery is reported for eccrine porocarcinoma. The use of radiotherapy as first treatment seems limited. FDG-PET/CT is able to detect metastases of the eccrine porocarcinoma.¹⁶ Fine needle aspiration cytology could be helpful to prove the metastatic deposits. Chemotherapy is used to treat distant metastases with limited response.¹

Lymphoscintigraphy

To predict the metastatic spread of tumours some models are used, mainly based on histopathological findings of the lymph node dissection specimens. O'Brien et al.¹⁷ developed a predictive model for head and neck melanoma of the skin. Their model predict for melanoma in the coronal line (an area of 5 centimetres from ear to ear) a lymph drainage pattern to levels I to V in the neck and to the parotid gland.¹⁷ By using lymphoscintigraphy after peritumoural injections of ^{99m}Tc-labeled nanocolloidal albumin the specific lymph drainage pattern of each individual tumour in the complex head and neck region can be visualized.

With lymphoscintigraphy the drainage pattern appears discordant to this model in 23-34% of the cases, particularly due to drainage towards retroauricular lymph nodes.^{18,19} To identify individual drainage patterns with lymphoscintigraphy, determining the extent of the lymph node dissection, further research for these melanomas is desirable. This results in more personalized treatment associated with less overtreatment (prevention of unnecessary elective and extended neck dissections) and less undertreatment (no treatment of occult lymph node metastases).

In oral cavity cancer sentinel lymph node biopsy is used to stage the clinically negative neck, but the procedure could also be helpful in case of a positive ipsilateral neck side by evaluating the contralateral neck side. Especially in tumours close to (or crossing) the midline the procedure can be supportive in the decision to perform a uni- or bilateral neck dissection.²⁰

Application of the sentinel lymph node biopsy for an eccrine porocarcinoma is reported only 12 times. In most cases the sentinel lymph nodes were negative. Norie et al²¹ reported 6 patients with an eccrine porocarcinoma and all of them had negative sentinel lymph node biopsies. Shiohara et al²² reported 2 patients with an eccrine porocarcinoma and a sentinel lymph node biopsy, of which 1 patient had an occult lymph node metastasis. Stoffels et al,²³ Sahn and Lang,²⁴ Sheff and Macdougall²⁵ and Motomura and Ishii²⁶ reported all 1 patient with an eccrine porocarcinoma and a negative sentinel lymph node biopsy.

Considerations

Our patient had an eccrine porocarcinoma of the scalp, paramedian right at the coronal line. The ipsilateral sentinel lymph node could be well visualized, however due to the proven lymph node metastases on this neck side there were no therapeutic consequences for sentinel node biopsy in the ipsilateral neck. The sentinel lymph node was not separately taken from the lymph node dissection specimen for histopathological

analysis. The ipsilateral drainage pattern was in reasonable agreement as expected in literature.²⁷

If lymphoscintigraphy will be performed after wide local excision, it could be possible to visualize a more broad lymph drainage pattern (even to the contralateral side) compared with direct peritumoural injections. The lymphoscintigraphy of our patient shows no contralateral drainage, resulting in a wait and see follow-up instead of an elective neck dissection. The long-term follow-up justified that treatment, reducing reasonably the morbidity of the treatment.

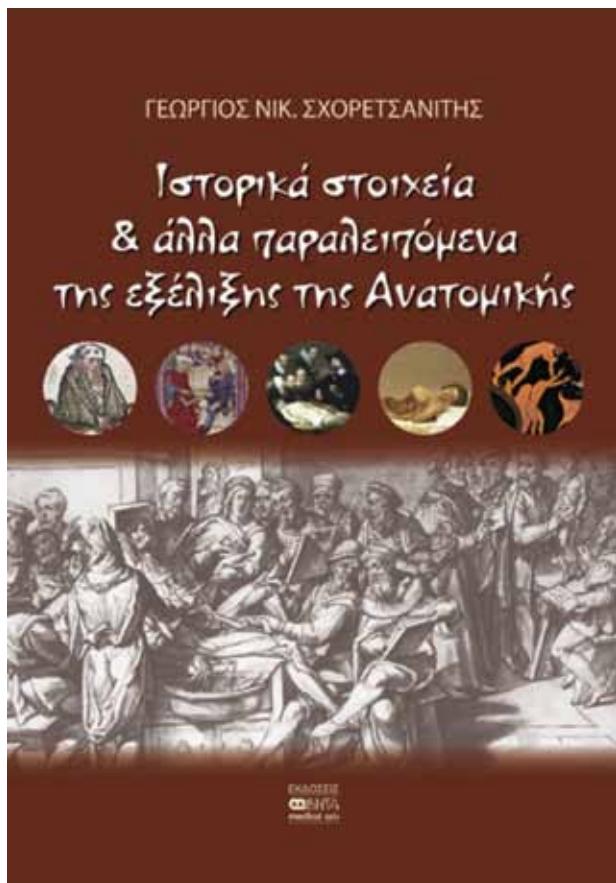
CONCLUSION

Lymphoscintigraphy could be valuable for other types of malignant skin cancers than melanoma, for example for eccrine porocarcinoma, and could be used to identify (or exclude) contralateral lymph node metastases.

REFERENCES

1. Brown CW Jr, Dy LC. Eccrine porocarcinoma. *Dermatol Ther* 2008; 21: 433-438.
2. Barnes M, Hestley A, Murray DR, et al. The risk of lymph node involvement in malignant cutaneous adnexal tumors. *Am Surg* 2014; 80: 270-274.
3. Bleier BS, Newman JG, Quon H, et al. Eccrine porocarcinoma of the nose: case report and review of world literature. *Arch Otolaryngol Head Neck Surg* 2006; 132: 215-218.
4. Klenzner T, Arapakis I, Kayser G, et al. Eccrine porocarcinoma of the ear mimicking basaloid squamous cell carcinoma. *Otolaryngol Head Neck Surg* 2006; 135: 158-160.
5. Kose R, Coban YK, Cirakli H. Eccrine porocarcinoma arising from preexisting eccrine poroma of the scalp after radiotherapy for cervical cancer. *Dermatol Online J* 2006; 12: 18.
6. Gerber PA, Schulte KW, Ruzicka T, et al. Eccrine porocarcinoma of the head: an important differential diagnosis in the elderly patient. *Dermatology* 2008; 216: 229-233.
7. Fraedrich J, Ostertag H, Welkoborsky HJ. Ekkrines Porokarzinom der Wangenhaut mit dem klinischen Bild eines primären Gl. parotis-Tumors. *Laryngorhi-*

nootologie 2008; 87: 800-804.


8. Watkins B, Urquhart AC, Holt JJ. Eccrine porocarcinoma of the external ear. *Ear Nose Throat J* 2011; 90: E25-E27.
9. Vessels CM, Patel TS, Greenhaw BN, et al. Scalp nodule on a middle-aged woman. *Clin Exp Dermatol* 2011; 36: 818-819.
10. Kagotani A, Ishida M, Yoshida K, et al. Fine-needle aspiration findings of metastatic porocarcinoma. *Diagn Cytopathol* 2014; 42: 280-282.
11. Kim WH, Kim JT, Park CK, et al. Successful reconstruction after resection of malignant eccrine poroma using retroauricular artery perforator-based island flap. *J Craniofac Surg* 2012; 23: e579-e582.
12. Leschka SC, Maruschke L. Langsam großenprogrediente Raumforderung am Hinterkopf mit Haarausfall. *Radiolge* 2014; 54: 485-486.
13. Chua PY, Cornish KS, Stenhouse G, et al. A Rare Case of Eccrine Porocarcinoma of the Eyelid. *Semin Ophthalmol* 2015; 30: 443-445.
14. Jeon H, Smart C. An unusual case of porocarcinoma arising on the scalp of a 22-year-old woman. *Am J Dermatopathol* 2015; 37: 237-239.
15. Wang LS, Handorf EA, Wu H, et al. Surgery and Adjuvant Radiation for High-risk Skin Adnexal Carcinoma of the Head and Neck. *Am J Clin Oncol* 2015 Jan 16. [Epub ahead of print]
16. Li SH, Chen MT, Chen YJ, et al. Metastatic eccrine porocarcinoma detected on FDG PET/CT. *Clin Nucl Med* 2007; 32: 743-745.
17. O'Brien CJ, Petersen-Schaefer K, Ruark D, et al. Radical, modified, and selective neck dissection for cutaneous malignant melanoma. *Head Neck* 1995; 17: 232-241.
18. O'Brien CJ, Uren RF, Thompson JF, et al. Prediction of potential metastatic sites in cutaneous head and neck melanoma using lymphoscintigraphy. *Am J Surg* 1995; 170: 461-466.
19. Klop WM, Veenstra HJ, Vermeeren L, et al. Assessment of lymphatic drainage patterns and implications for the extent of neck dissection in head and neck melanoma patients. *J Surg Oncol* 2011; 103: 756-760.
20. Bluemel C, Rubello D, Colletti PM, et al. Sentinel lymph node biopsy in oral and oropharyngeal squamous cell carcinoma: current status and unresolved challenges. *Eur J Nucl Med Mol Imaging* 2015; 42: 1469-1480.
21. Nouri K, Rivas MP, Pedroso F, et al. Sentinel lymph node biopsy for high-risk cutaneous squamous cell carcinoma of the head and neck. *Arch Dermatol* 2004; 140: 1284.
22. Shiohara J, Koga H, Uhara H, et al. Eccrine porocarcinoma: clinical and pathological studies of 12 cases. *J Dermatol* 2007; 34: 516-522.
23. Stoffels I, Poeppel T, Boy C, et al. Radio-guided surgery: advantages of a new portable γ -camera (Sentinella) for intraoperative real time imaging and detection of sentinel lymph nodes in cutaneous malignancies. *J Eur Acad Dermatol Venereol* 2012; 26: 308-313.
24. Sahn RE, Lang PG. Sentinel lymph node biopsy for high-risk nonmelanoma skin cancers. *Dermatol Surg* 2007; 33: 786-792.
25. Sheff JS, Macdougall DB. Unusual case of porocarcinoma of the foot with no clinically evident dermatologic manifestations. *J Foot Ankle Surg* 2005; 44: 412-414.
26. Motomura H, Ishii M. Lymphatic mapping and sentinel lymph node biopsy for malignant melanoma in Japanese. *Osaka City Med J* 2004; 50: 29-37.
27. Leong SP. Role of selective sentinel lymph node dissection in head and neck melanoma. *J Surg Oncol* 2011; 104: 361-368.

BOOK REVIEW

Ένα υπέροχο ταξίδι στην ιστορία και εξέλιξη της ανατομικής

E. de Bree

Κλινική Χειρουργικής Ογκολογίας, Πανεπιστημιακό Νοσοκομείο Ηρακλείου

«Ιστορικά στοιχεία και άλλα παραλειπόμενα της εξέλιξης της ανατομικής», Γεώργιος Νικ. Σχορετσανίτης
Εκδότης: BHTA medical arts
ISBN: 978-960-452-197-5

Η Ανατομία δεν είναι μόνο το βιβλίο Gray's Anatomy ή το βιβλίο Surgical Anatomy του Σκανδαλάκη αλλά μια επιστήμη που πέρασε πολλές δυσκολίες και δοκιμασίες παγκοσμίως.

Ο συνάδερφος χειρουργός Γεώργιος Σχορετσανίτης καταγράφει στο βιβλίο του «Ιστορικά στοιχεία και άλλα παραλειπόμενα της εξέλιξης της ανατομικής» λεπτομερώς και με ελκυστικό και πετυχημένο τρόπο την ιστορική διαδρομή και εξέλιξη της ανατομικής. Σε αυτό το υπέροχο ταξίδι δεν αναφέρεται μόνο στα ευρύτερα γνωστά, αλλά και στα -για τους περισσότερους από εμάς- άγνωστα ιστορικά στοιχεία της ανατομικής από διάφορες χώρες του κόσμου. Ο ίδιος ο συγγραφέας, συνοψίζοντας το περιεχόμενο του βιβλίου του:

«Η Ανατομία, ένας από τους ακρογωνιαίους λίθους της μακράς και επίπονης διαδικασίας της εκπαίδευσης του γιατρού, έχει υπέροχη ιστορία και θεωρείται η βάση των βιολογικών επιστημών. Οι επιστημονικές μέθοδοι έχουν βελτιωθεί δραματικά όλους αυτούς τους αιώνες, από την εξέταση των ζώων μέχρι την ανατομή των πτωμάτων, χρησιμοποιώντας πολύπλοκες τεχνικές που αναπτύχθηκαν κυρίως τον 20ό αιώνα. Η εκπαίδευση της ανατομίας εξελίχθηκε παράλληλα σε όχημα και για την ηθική διαπαιδαγώγηση των

φοιτητών. Η ιστορία έχει καταγράψει απίθανες και αναρίθμητες πηγές από τις οποίες προέρχονταν τα πτώματα. Ανάμεσά τους ήταν σώματα εκτελεσθέντων, πτώματα που εκλάπησαν από τα νεκροταφεία, αζήτητα πτώματα φτωχών και φυλακισμένων που κατέληξαν για διαφόρους λόγους στα νοσοκομεία, τα πτωχοκομεία και στις φυλακές, πτώματα ατόμων που αυτοκτόνησαν ή έπεσαν θύματα μονομαχίας, καθώς και ατόμων που δολοφονήθηκαν αποκλειστικώς για

σκοπούς εκπαίδευσης. Η σύγχρονη ανατομική, αρκετά εναίσθητη σε θέματα αξιοπρέπειας του ανθρωπίνου σώματος, ως επί το πλείστον χρησιμοποιεί σώματα που προέρχονται από δωρεές, ενώ σε πολλές χώρες, η χρήση των αζήτητων πτωμάτων είναι νόμιμη.

Το βιβλίο ετούτο ταξιδεύει τον αναγνώστη σε όλο αυτό το υπέροχο ταξίδι και στα μικρότερα μυστικά του, αυτά που δεν έγιναν τόσο γνωστά όσο έπρεπε, για διαφόρους λόγους!»

GUIDELINES FOR AUTHORS

Hellenic Surgical Oncology is the official journal of the Hellenic Society of Surgical Oncology and publishes manuscripts related to all aspects of surgical oncology. The following types of manuscripts are published: editorials, review articles, original articles concerning clinical, experimental and/or research studies, case reports, discussions of controversial issues, reports of seminars, symposia, round table discussions and lectures, book reviews and letters to the Editor.

MANUSCRIPT SUBMISSION

The manuscript can either be emailed to eis-iatriki@otenet.gr or sent by post on a CD to the **Hellenic Society of Surgical Oncology, 76 Sevastopouleos Street, GR-115 26 Athens, Greece.**

Submission of a manuscript implies that the work described has not been previously published, that it is not under consideration for publication elsewhere and that the last version of the manuscript has been approved by all co-authors. When necessary, the manuscript should also be approved by the responsible authorities – tacitly or explicitly – at the institute where the work was carried out. The submission should be accompanied by a cover letter on behalf of all authors signed by the corresponding author, in which the above conditions are noted. The publisher will not be held legally responsible for any claims for compensation.

PERMISSION

Authors wishing to include figures, tables, or text passages that have already been published elsewhere are required to obtain permission from the copyright owner(s) for both the print and online format and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.

REVIEW OF MANUSCRIPTS

All manuscripts which meet the Journal's aims are reviewed. After the reviewers have sent their comments, the editing committee decides whether the manuscript is accepted, rejected or may be resubmitted after minor or major revisions as suggested by the reviewers. When the resubmitted manuscript is sufficiently improved, the manuscript may yet be accepted. Following approval, a manuscript proof is forwarded to the corresponding author. The purpose of the proof is to check for typesetting or conversion errors and the completeness and accuracy of the text, tables and figures. Substantial changes in content, e.g., new results, corrected values, title and authorship, are not allowed without the approval of the Editor. After checking, the proof with the final authors' comments has to be returned to the Editor for publication. Once papers are approved, the publisher claims exclusive publishing rights.

MANUSCRIPT PREPARATION

The manuscript should be written in proper English. The text should be submitted in an Ms Word file and written with double line spacing and a normal, plain font (i.e. 12-point Times Roman or 11-point Arial). The pages should be numbered consecutively. Field functions should not be used. For indents, use tab stops or other commands, but not the space bar. To create tables for the manuscript use the table function, not spreadsheets.

The submitted manuscript should include on separate pages: the title page, the abstract, the main text, references, tables and legends of figures.

Title page

The title page should include a concise and informative title in capital letters, the names of all authors (first letter of their first name(s) followed by their surname), the affiliations of the authors and the name of the corresponding author with his or her full address, telephone and fax numbers, and e-mail address. In case of case reports, 'Report of a Case' or 'Report of two (or three) Cases' should accompany the title as subtitle.

Abstract

The next page should include an abstract of 250 words maximum. The abstract of original articles should be structured with the following subheadings: Aim or Background, Material and Methods, Results, and Conclusion(s). The abstracts of case reports, review articles, discussions of controversial issues and reports of seminars, symposia, round table discussions and lectures do not need to be structured. Editorials, book reviews and letters to the editors do not need an abstract. The abstract should not contain any undefined abbreviations or unspecified references. Please provide 3 to 10 key words on this page which can be used for indexing purposes.

Main text

The main text of the *original articles* should be divided into the following sections: Introduction, Material and Methods, Results, Discussion (including conclusion(s)). The text of the manuscript together with title, abstract, references, tables and figures should generally not exceed 15 (double-spaced) typed pages.

Case reports should not exceed 10 (double-spaced) typed pages, with no more than 6 figures/tables. The text should be divided into: Introduction, Case Report and Discussion.

Review articles should be well structured and not consist only of a report of literature data that are available, but also of a critical discussion of these data and conclusions. Review articles should not exceed 20 (double-spaced) typed pages, while *editorials, book reviews, letters to the editor* and other reports should be concise.

Abbreviations should be defined as first mentioned and used consistently afterwards. Generic names of drugs and pesticides are preferred; if trade names are used, the generic names should be given at first mention.

Acknowledgments

Acknowledgments of people, grants, funds, etc. should be placed in a separate section before the reference list. The names of funding organizations should be written in full.

Conflict of interest

Authors must indicate whether or not they have a financial relationship with the organization that sponsored the research. This note should be added in a separate section before the reference list. If no conflict exists, authors should state: 'The authors declare that they have no conflict of interest'. The authors should have full control of all primary data and agree to allow the journal to review their data if requested.

References

Reference citations in the text should be identified by numbers in superscript at the end of the sentence or where the reference is explicitly mentioned. For example: 'Surgical oncology is considered a distinct discipline.^{1,3-6}'; 'In a recent randomized trial,² the value of sentinel node biopsy ...'; 'Johnson et al.⁷ reported on a ...'. The references should be numbered in order of appearance.

The list of references should only include works that are cited in the text and that have been published or accepted for publication. Personal communications and unpublished works should only be mentioned in the text. The entries in the list should be numbered consecutively.

The reference of journal articles should include author(s), title and journal name, volume and pages. When the number of authors exceeds six, the first three should be mentioned followed by, "et al". Always use the standard abbreviation of the name of a journal according to the ISSN List of Title Word Abbreviations, see <http://www.issn.org/2-22661-LTWAonline.php>. Please see the examples below for journal articles and other types of references:

Journal article:

Paradisi A, Abeni D, Rusciani A, et al. Dermatofibrosarcoma protuberans: wide local excision vs. Mohs micrographic surgery. *Cancer Treat Rev* 2008; 34: 728-736.

Book chapter:

Miettinen MM, Mandahl N. Spindle cell lipoma/pleomorphic lipoma. In: WHO classification of tumors. Pathology and genetics of tumours of soft tissue and bone. Fletcher CDM, Unni K, Mertens F (eds). IARC Press, Lyon 2002; pages 31-32.

Online document:

Patel H, Smith KA. Use of spirit-based solutions during surgical procedures and safety guidelines. <http://www.ma.gov.uk/Publications/CON0854>. Accessed April 14, 2014.

Tables

Tables should be numbered using Arabic numerals and always be cited in the text in consecutive numerical order. Each table should have a concise title. Identify any previously published material by providing the original source in the form of a reference in superscript at the end of the table caption. Footnotes to tables should be indicated by superscript lower-case letters (or asterisks for significance values and other statistical data) and noted beneath the body of the table.

Figures

All figures are to be numbered using Arabic numerals. Figures should always be cited in the text in consecutive numerical order. Figure parts should be denoted in lower-case letters (a, b, c, etc.). The legends of the figures should be written on a separate page and be concise and descriptive.

Please supply all figures electronically. Indicate which graphics programme was used to create the artwork. Name your figure files with 'Fig' and the figure number, e.g., Fig1.jpeg. The figures should have adequate resolution. Black and white figures are published free of charge, but authors are requested to contribute to the additional costs for publishing colour art. When a person is clearly recognisable in a photograph, characteristics should be hidden (for example, eyes should be blocked) or written permission from this person for the publication of the unretouched photograph should be provided by the authors. When a figure has already been used in another publication, written permission for use from the copyright holder is required.

ETHICAL STANDARDS

Manuscripts of experimental studies submitted for publication must contain a declaration that the experiments comply with the current laws of the country in which they were performed. Please include this note in a separate section before the reference list.

Manuscripts of interventional studies submitted for publication must contain a statement to the effect that all human studies have been approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki. It should also be stated clearly in the text that all persons gave their informed consent prior to their inclusion in the study. Details that might disclose the identity of the subjects under study should be omitted.

The Editor reserves the right to reject manuscripts that do not comply with the above-mentioned requirements. The Editor has the right to make changes in accordance with the guidelines set out in 'Guidelines for Authors'. The author will be held responsible for false statements or failure to fulfill the above-mentioned requirements.